Peter Lodahl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6868812/publications.pdf

Version: 2024-02-01

176 papers 10,544 citations

44069 48 h-index 100 g-index

178 all docs

 $\begin{array}{c} 178 \\ \text{docs citations} \end{array}$

178 times ranked

7992 citing authors

#	Article	IF	CITATIONS
1	Wafer-scale epitaxial modulation of quantum dot density. Nature Communications, 2022, 13, 1633.	12.8	9
2	High-fidelity multiphoton-entangled cluster state with solid-state quantum emitters in photonic nanostructures. Physical Review A, 2022, 105, .	2.5	16
3	A Pure and Indistinguishable Singleâ€Photon Source at Telecommunication Wavelength. Advanced Quantum Technologies, 2022, 5, .	3.9	16
4	In-plane resonant excitation of quantum dots in a dual-mode photonic-crystal waveguide with high β-factor. Quantum Science and Technology, 2022, 7, 025023.	5. 8	6
5	A deterministic source of single photons. Physics Today, 2022, 75, 44-50.	0.3	13
6	Chiral quantum optics in broken-symmetry and topological photonic crystal waveguides. Physical Review Research, 2022, 4, .	3.6	15
7	Deterministic Photon Sorting in Waveguide QED Systems. Physical Review Letters, 2022, 128, .	7.8	14
8	Quantum state transfer between a frequency-encoded photonic qubit and a quantum-dot spin in a nanophotonic waveguide. Physical Review A, 2022, 105, .	2.5	4
9	Entangling a Hole Spin with a Time-Bin Photon: A Waveguide Approach for Quantum Dot Sources of Multiphoton Entanglement. Physical Review Letters, 2022, 128, .	7.8	14
10	On-Demand Source of Dual-Rail Photon Pairs Based on Chiral Interaction in a Nanophotonic Waveguide. PRX Quantum, 2022, 3, .	9.2	7
11	Single-Photon Radiative Auger Emission from a Quantum Dot. , 2021, , .		O
12	Experimental Reconstruction of the Few-Photon Nonlinear Scattering Matrix from a Single Quantum Dot in a Nanophotonic Waveguide. Physical Review Letters, 2021, 126, 023603.	7.8	27
13	Electroabsorption in gated GaAs nanophotonic waveguides. Applied Physics Letters, 2021, 118, .	3.3	3
14	Coherent Spin-Photon Interface with Waveguide Induced Cycling Transitions. Physical Review Letters, 2021, 126, 013602.	7.8	27
15	Quantum-dot-based deterministic photon–emitter interfaces for scalable photonic quantum technology. Nature Nanotechnology, 2021, 16, 1308-1317.	31.5	85
16	Integrated Whispering-Gallery-Mode Resonator for Solid-State Coherent Quantum Photonics. Nano Letters, 2021, 21, 8707-8714.	9.1	7
17	Fidelity of time-bin-entangled multiphoton states from a quantum emitter. Physical Review A, 2021, 104,	2.5	8
18	Suspended Spotâ€Size Converters for Scalable Singleâ€Photon Devices. Advanced Quantum Technologies, 2020, 3, 1900076.	3.9	6

#	Article	IF	Citations
19	Lifetimes and Quantum Efficiencies of Quantum Dots Deterministically Positioned in Photonic rystal Waveguides. Advanced Quantum Technologies, 2020, 3, 2000026.	3.9	4
20	Near Transform-Limited Quantum Dot Linewidths in a Broadband Photonic Crystal Waveguide. ACS Photonics, 2020, 7, 2343-2349.	6.6	28
21	On-chip deterministic operation of quantum dots in dual-mode waveguides for a plug-and-play single-photon source. Nature Communications, 2020, 11, 3782.	12.8	48
22	Deterministic positioning of nanophotonic waveguides around single self-assembled quantum dots. APL Photonics, 2020, 5, 086101.	5.7	28
23	Scalable integrated single-photon source. Science Advances, 2020, 6, .	10.3	144
24	Radiative Auger process in the single-photon limit. Nature Nanotechnology, 2020, 15, 558-562.	31.5	23
25	Onâ€Chip Nanomechanical Filtering of Quantumâ€Dot Singleâ€Photon Sources. Laser and Photonics Reviews, 2020, 14, 1900404.	8.7	9
26	One-Way Quantum Repeater Based on Near-Deterministic Photon-Emitter Interfaces. Physical Review X, 2020, 10, .	8.9	61
27	Efficient demultiplexed single-photon source with a quantum dot coupled to a nanophotonic waveguide. Applied Physics Letters, 2019, 115, .	3.3	19
28	Quantum Networks with Deterministic Spin–Photon Interfaces. Advanced Quantum Technologies, 2019, 2, 1800091.	3.9	51
29	Coherent nonlinear optics of quantum emitters in nanophotonic waveguides. Nanophotonics, 2019, 8, 1641-1657.	6.0	40
30	Roadmap on all-optical processing. Journal of Optics (United Kingdom), 2019, 21, 063001.	2.2	128
31	Coherent Optical Control of a Quantum-Dot Spin-Qubit in a Waveguide-Based Spin-Photon Interface. Physical Review Applied, 2019, 11, .	3.8	20
32	Suppressing phonon decoherence of high performance single-photon sources in nanophotonic waveguides. Quantum Science and Technology, 2019, 4, 015003.	5.8	9
33	Nanomechanical single-photon routing. Optica, 2019, 6, 524.	9.3	41
34	Quantum Optics with Near-Lifetime-Limited Quantum-Dot Transitions in a Nanophotonic Waveguide. Nano Letters, 2018, 18, 1801-1806.	9.1	49
35	Spin–photon interface and spin-controlled photon switching in a nanobeam waveguide. Nature Nanotechnology, 2018, 13, 398-403.	31.5	85
36	Quantum-dot based photonic quantum networks. Quantum Science and Technology, 2018, 3, 013001.	5.8	108

#	Article	IF	CITATIONS
37	High-efficiency shallow-etched grating on GaAs membranes for quantum photonic applications. Applied Physics Letters, $2018,113,.$	3.3	39
38	Scaling up solid-state quantum photonics. Science, 2018, 362, 646-646.	12.6	6
39	Strongly Correlated Photon Transport in Waveguide Quantum Electrodynamics with Weakly Coupled Emitters. Physical Review Letters, 2018, 121, 143601.	7.8	67
40	Carrier-mediated optomechanical forces in semiconductor nanomembranes with coupled quantum wells. Physical Review B, 2018, 98, .	3.2	6
41	Numerical modeling of the coupling efficiency of single quantum emitters in photonic-crystal waveguides. Journal of the Optical Society of America B: Optical Physics, 2018, 35, 514.	2.1	27
42	Phonon Decoherence of Quantum Dots in Photonic Structures: Broadening of the Zero-Phonon Line and the Role of Dimensionality. Physical Review Letters, 2018, 120, 257401.	7.8	46
43	Chiral quantum optics. Nature, 2017, 541, 473-480.	27.8	1,007
44	Two mechanisms of disorder-induced localization in photonic-crystal waveguides. Physical Review B, 2017, 96, .	3.2	19
45	Indistinguishable and efficient single photons from a quantum dot in a planar nanobeam waveguide. Physical Review B, 2017, 96, .	3.2	85
46	Physics of Quantum Light Emitters in Disordered Photonic Nanostructures. Annalen Der Physik, 2017, 529, 1600351.	2.4	24
47	Narrow optical linewidths and spin pumping on charge-tunable close-to-surface self-assembled quantum dots in an ultrathin diode. Physical Review B, 2017, 96, .	3.2	29
48	Engineering chiral light–matter interaction in photonic crystal waveguides with slow light. Optical Materials Express, 2017, 7, 43.	3.0	58
49	Efficient fiber-coupled single-photon source based on quantum dots in a photonic-crystal waveguide. Optica, 2017, 4, 178.	9.3	87
50	The Mesoscopic Nature of Quantum Dots in Photon Emission. Nano-optics and Nanophotonics, 2017, , 165-198.	0.2	2
51	Electro-optic routing of photons from a single quantum dot in photonic integrated circuits. Optics Express, 2017, 25, 33514.	3.4	21
52	Role of multilevel states on quantum-dot emission in photonic-crystal cavities. Physical Review B, 2016, 94, .	3.2	3
53	Quantum Networks with Chiral-Light–Matter Interaction in Waveguides. Physical Review Letters, 2016, 117, 240501.	7.8	93
54	Single-Photon Superradiance from a Quantum Dot. Physical Review Letters, 2016, 116, 163604.	7.8	48

#	Article	IF	CITATIONS
55	Deterministic Single-Phonon Source Triggered by a Single Photon. Physical Review Letters, 2016, 116, 234301.	7.8	15
56	Observation of the exciton Mott transition in the photoluminescence of coupled quantum wells. Physical Review B, $2016, 94, .$	3.2	12
57	Reconfigurable quantum photonic circuits based on nano-electro-mechanical systems. , 2015, , .		0
58	Theory and experiments of disorder-induced resonance shifts and mode-edge broadening in deliberately disordered photonic crystal waveguides. Physical Review A, 2015, 92, .	2.5	25
59	Photonic quantum-information processing with quantum dots in photonic crystals. , 2015, , .		0
60	Unraveling the Mesoscopic Character of Quantum Dots in Nanophotonics. Physical Review Letters, 2015, 114, 247401.	7.8	19
61	Deterministic photon–emitter coupling in chiral photonic circuits. Nature Nanotechnology, 2015, 10, 775-778.	31.5	466
62	Photon Sorting, Efficient Bell Measurements, and a Deterministic Controlled- <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>Z</mml:mi></mml:math> Gate Using a Passive Two-Level Nonlinearity. Physical Review Letters, 2015, 114, 173603.	7.8	48
63	Interfacing single photons and single quantum dots with photonic nanostructures. Reviews of Modern Physics, 2015, 87, 347-400.	45.6	1,014
64	Optical refrigeration with coupled quantum wells. Optics Express, 2015, 23, 25340.	3.4	6
64		3.4	6
	Optical refrigeration with coupled quantum wells. Optics Express, 2015, 23, 25340. Single-photon non-linear optics with a quantum dot in a waveguide. Nature Communications, 2015, 6,		
65	Optical refrigeration with coupled quantum wells. Optics Express, 2015, 23, 25340. Single-photon non-linear optics with a quantum dot in a waveguide. Nature Communications, 2015, 6, 8655.		196
65 66	Optical refrigeration with coupled quantum wells. Optics Express, 2015, 23, 25340. Single-photon non-linear optics with a quantum dot in a waveguide. Nature Communications, 2015, 6, 8655. Photonic Quantum-Information Processing with Quantum Dots in Photonic Crystals., 2015,,.		196
65 66 67	Optical refrigeration with coupled quantum wells. Optics Express, 2015, 23, 25340. Single-photon non-linear optics with a quantum dot in a waveguide. Nature Communications, 2015, 6, 8655. Photonic Quantum-Information Processing with Quantum Dots in Photonic Crystals., 2015,,. Accessing the Magnetic Dipole and Electric Quadrupole of Quantum Dots with Light., 2014,,.		196 0 0
65 66 67	Optical refrigeration with coupled quantum wells. Optics Express, 2015, 23, 25340. Single-photon non-linear optics with a quantum dot in a waveguide. Nature Communications, 2015, 6, 8655. Photonic Quantum-Information Processing with Quantum Dots in Photonic Crystals., 2015,,. Accessing the Magnetic Dipole and Electric Quadrupole of Quantum Dots with Light., 2014,,. Statistics of decay dynamics of quantum emitters in disordered photonic-crystal waveguides., 2014,, Statistical measurements of quantum emitters coupled to Anderson-localized modes in disordered	12.8	196 0 0
65 66 67 68	Optical refrigeration with coupled quantum wells. Optics Express, 2015, 23, 25340. Single-photon non-linear optics with a quantum dot in a waveguide. Nature Communications, 2015, 6, 8655. Photonic Quantum-Information Processing with Quantum Dots in Photonic Crystals., 2015,,. Accessing the Magnetic Dipole and Electric Quadrupole of Quantum Dots with Light., 2014,,. Statistics of decay dynamics of quantum emitters in disordered photonic-crystal waveguides., 2014,,. Statistical measurements of quantum emitters coupled to Anderson-localized modes in disordered photonic-crystal waveguides. Optics Express, 2014, 22, 30992. Efficient out-coupling of high-purity single photons from a coherent quantum dot in a	3.4	196 0 0 0

#	Article	IF	Citations
73	Probing Electric and Magnetic Vacuum Fluctuations with Quantum Dots. Physical Review Letters, 2014, 113, 043601.	7.8	22
74	Disorder-induced resonance shifts and mode edge broadening in photonic crystal waveguides. , 2014, , .		0
75	Quantifying the intrinsic amount of fabrication disorder in photonic-crystal waveguides from optical far-field intensity measurements. Applied Physics Letters, 2013, 102, 031101.	3.3	28
76	Decay dynamics and exciton localization in large GaAs quantum dots grown by droplet epitaxy. Physical Review B, 2013, 88, .	3.2	29
77	Microscopic theory of indistinguishable single-photon emission from a quantum dot coupled to a cavity: The role of non-Markovian phonon-induced decoherence. Physical Review B, 2013, 87, .	3.2	46
78	Cooperative fluorescence from a strongly driven dilute cloud of atoms. Physical Review A, 2013, 87, .	2.5	23
79	A comparison between experiment and theory on few-quantum-dot nanolasing in a photonic-crystal cavity. Optics Express, 2013, 21, 28507.	3.4	7
80	Quantitative analysis of quantum dot dynamics and emission spectra in cavity quantum electrodynamics. New Journal of Physics, 2013, 15, 025013.	2.9	22
81	Solid-state quantum optics with quantum dots in photonic nanostructures. Nanophotonics, 2013, 2, 39-55.	6.0	20
82	Shell theorem for spontaneous emission. Physical Review B, 2013, 88, .	3.2	19
83	Measuring the effective phonon density of states of a quantum dot in cavity quantum electrodynamics. Physical Review B, 2013, 88, .	3.2	23
84	Anderson localization in disordered photonic crystals for cavity quantum electrodynamics and random lasing. , 2013, , .		0
85	On the Purcell effect beyond the dipole approximation. , 2012, , .		1
86	Nonuniversal Intensity Correlations in a Two-Dimensional Anderson-Localizing Random Medium. Physical Review Letters, 2012, 109, 253902.	7.8	34
87	Continuous-wave spatial quantum correlations of light induced by multiple scattering. Physical Review A, 2012, 86, .	2.5	11
88	Statistical Theory of a Quantum Emitter Strongly Coupled to Anderson-Localized Modes. Physical Review Letters, 2012, 108, 113901.	7.8	36
89	Measurement of a band-edge tail in the density of states of a photonic-crystal waveguide. Physical Review B, 2012, 86, .	3.2	28
90	Microscopic theory of phonon-induced effects on semiconductor quantum dot decay dynamics in cavity QED. Physical Review B, 2012, 86, .	3.2	51

#	Article	IF	Citations
91	All-solid-state quantum optics employing quantum dots in photonic crystals., 2012,, 395-422e.		3
92	Optical cavity cooling of mechanical modes of a semiconductor nanomembrane. Nature Physics, 2012, 8, 168-172.	16.7	79
93	Extraction of optical Bloch modes in a photonic-crystal waveguide. Journal of Applied Physics, 2012, 111, 033108.	2.5	3
94	Spontaneous emission from large quantum dots in nanostructures: Exciton-photon interaction beyond the dipole approximation. Physical Review B, 2012, 86, .	3.2	50
95	Cavity QED with Anderson-Localized Cavities in Disordered Photonic Crystals., 2012,,.		0
96	Probing the statistical properties of Anderson localization with quantum emitters. New Journal of Physics, 2011, 13, 063044.	2.9	40
97	Finite element modeling of plasmon based single-photon sources. , 2011, , .		0
98	Quantum Electrodynamics with Semiconductor Quantum Dots Coupled to Anderson-localized Random Cavities. , 2011 , , .		0
99	Quantum Interference of Multiple Beams Induced by Multiple Scattering., 2011, , .		0
100	Strongly modified plasmon–matter interaction with mesoscopic quantum emitters. Nature Physics, 2011, 7, 215-218.	16.7	187
101	Quantumâ€dot excitons in nanostructured environments. Physica Status Solidi (B): Basic Research, 2011, 248, 375-383.	1.5	2
102	On the interpretation of wave function overlaps in quantum dots. Physica Status Solidi (B): Basic Research, 2011, 248, 855-858.	1.5	4
103	Inside Back Cover: Quantumâ€dot excitons in nanostructured environments (Phys. Status Solidi B) Tj ETQq1 1 0.	.784314 r _j	gBT /Overloc
104	Scattering Induced Quantum Interference of Multiple Quantum Optical States., 2011,,.		0
105	Angle-resolved photon-coincidence measurements in a multiple-scattering medium. Physical Review A, 2011, 83, .	2.5	6
106	High-Q optomechanical GaAs nanomembranes. Applied Physics Letters, 2011, 99, 243102.	3.3	29
107	Multiple scattering of quantum optical states. , 2011, , .		0
108	Observation of non-Markovian dynamics of a single quantum dot in a micropillar cavity., 2011,,.		0

#	Article	IF	CITATIONS
109	Decay dynamics of radiatively coupled quantum dots in photonic crystal slabs. Physical Review B, 2011, 83, .	3.2	29
110	Mapping the Local Density of Optical States of a Photonic Crystal with Single Quantum Dots. Physical Review Letters, 2011, 107, 167404.	7.8	63
111	Observation of Non-Markovian Dynamics of a Single Quantum Dot in a Micropillar Cavity. Physical Review Letters, 2011, 106, 233601.	7.8	118
112	Few-quantum-dot lasing in photonic crystal nanocavities. , 2011, , .		0
113	A nanophotonic probe for quantum electrodynamics in random cavities. , 2011, , .		0
114	Role of the lightmatter coupling strength on non-Markovian phonon effects in semiconductor cavity QED., 2011,,.		0
115	Extracting the radiative, nonradiative and spin-flip rate of single self-assembled quantum dots in photonic crystals. , 2011 , , .		0
116	Quantum Electrodynamics in Disordered Photonic Crystals., 2011,,.		0
117	Probing long-lived dark excitons in self-assembled quantum dots. Physical Review B, 2010, 81, .	3.2	67
118	Controlling Anderson Localization in Disordered Photonic Crystal Waveguides. , 2010, , .		0
119	Extraction of the \hat{l}^2 -factor for single quantum dots coupled to a photonic crystal waveguide. Applied Physics Letters, 2010, 96, .	3.3	50
120	Dynamically reconfigurable directionality of plasmon-based single photon sources. Physical Review B, 2010, 82, .	3.2	16
121	Non-Markovian Model of Photon-Assisted Dephasing by Electron-Phonon Interactions in a Coupled Quantum-Dot–Cavity System. Physical Review Letters, 2010, 104, 157401.	7.8	90
122	Mutual coupling of two semiconductor quantum dots via an optical nanocavity. Physical Review B, 2010, 82, .	3.2	82
123	Large quantum dots with small oscillator strength. Physical Review B, 2010, 82, .	3.2	27
124	Spontaneous decay of a single quantum dot coupled to a metallic slot waveguide in the presence of leaky plasmonic modes. Optics Express, 2010, 18, 12489.	3.4	26
125	Highly anisotropic decay rates of single quantum dots in photonic crystal membranes. Optics Letters, 2010, 35, 2768.	3.3	8
126	Light propagation in finite-sized photonic crystals: multiple scattering using an electric field integral equation. Journal of the Optical Society of America B: Optical Physics, 2010, 27, 228.	2.1	12

#	Article	IF	Citations
127	Quantum Interference and Entanglement Induced by Multiple Scattering of Light. Physical Review Letters, 2010, 105, 090501.	7.8	34
128	Cavity Quantum Electrodynamics with Anderson-Localized Modes. Science, 2010, 327, 1352-1355.	12.6	293
129	Quantum efficiency and oscillator strength of site-controlled InAs quantum dots. Applied Physics Letters, 2010, 96, .	3.3	34
130	Finite-element modeling of spontaneous emission of a quantum emitter at nanoscale proximity to plasmonic waveguides. Physical Review B, 2010, 81, .	3.2	115
131	Density of states controls Anderson localization in disordered photonic crystal waveguides. Physical Review B, 2010, 82, .	3.2	47
132	Highly anisotropic decay rate of single quantum dots in photonic crystal membranes. , 2010, , .		1
133	Dark-bright exciton spin-flip rates of quantum dots determined by a modified local density of optical states. , 2009, , .		0
134	Size dependent oscillator strength of CdSe quantum dots determined by nanophotonic control. , 2009, , .		0
135	Effect of temperature and phonons on the spectral properties of a multi-level semiconductor quantum dot single-photon source., 2009,,.		0
136	Demonstration of quadrature squeezed surface-plasmons in a gold waveguide., 2009,,.		0
137	Demonstration of Quadrature-Squeezed Surface Plasmons in a Gold Waveguide. Physical Review Letters, 2009, 102, 246802.	7.8	103
138	Observation of Spatial Quantum Correlations Induced by Multiple Scattering of Nonclassical Light. Physical Review Letters, 2009, 102, 193901.	7.8	45
139	Electrical control of spontaneous emission and strong coupling for a single quantum dot. New Journal of Physics, 2009, 11, 023034.	2.9	130
140	Frequency dependence of the radiative decay rate of excitons in self-assembled quantum dots: Experiment and theory. Physical Review B, 2009, 80, .	3.2	56
141	Size-dependent oscillator strength and quantum efficiency of CdSe quantum dots controlled via the local density of states. Physical Review B, 2009, 79, .	3.2	89
142	Experimental demonstration of spatial quantum correlations in multiple scattering media., 2009,,.		0
143	Size dependence of the wavefunction of self-assembled InAs quantum dots from time-resolved optical measurements. Physical Review B, 2008, 77, .	3.2	119
144	Experimental Realization of Highly Efficient Broadband Coupling of Single Quantum Dots to a Photonic Crystal Waveguide. Physical Review Letters, 2008, 101, 113903.	7.8	279

#	Article	IF	CITATIONS
145	Fractional decay of quantum dots in real photonic crystals. Optics Letters, 2008, 33, 1557.	3.3	12
146	Fluorescence Lifetime of Emitters with Broad Homogeneous Linewidths Modified in Opal Photonic Crystals. Journal of Physical Chemistry C, 2008, 112, 7250-7254.	3.1	59
147	Decay dynamics of quantum dots influenced by the local density of optical states of two-dimensional photonic crystal membranes. Applied Physics Letters, 2008, 93, 094102.	3.3	19
148	Quantum efficiency of self-assembled quantum dots determined by a modified optical local density of states. , 2007 , , .		0
149	Spatial Quantum Correlations Induced by Random Multiple Scattering of Quadrature Squeezed Light. , 2007, , .		0
150	Strongly nonexponential time-resolved fluorescence of quantum-dot ensembles in three-dimensional photonic crystals. Physical Review B, 2007, 75, .	3.2	86
151	Statistical analysis of time-resolved emission from ensembles of semiconductor quantum dots: Interpretation of exponential decay models. Physical Review B, 2007, 75, .	3.2	170
152	Quantum noise frequency correlations of multiply scattered light. Optics Letters, 2006, 31, 110.	3.3	10
153	Quantum correlations induced by multiple scattering of quadrature squeezed light. Optics Express, 2006, 14, 6919.	3.4	14
154	Spatial quantum correlations induced by multiple scattering of light., 2006,,.		0
155	Spatial Quantum Correlations in Multiple Scattered Light. Physical Review Letters, 2005, 95, 173901.	7.8	56
156	Transport of Quantum Noise through Random Media. Physical Review Letters, 2005, 94, 153905.	7.8	36
157	Determination of the diffusion constant using phase-sensitive measurements. Physical Review E, 2005, 71, 056604.	2.1	29
158	Frequency-Dependent Spontaneous Emission Rate from CdSe and CdTe Nanocrystals: Influence of Dark States. Physical Review Letters, 2005, 95, 236804.	7.8	174
159	Directional Fluorescence Spectra of Laser Dye in Opal and Inverse Opal Photonic Crystals. Journal of Physical Chemistry B, 2005, 109, 9980-9988.	2.6	155
160	Quantitative analysis of directional spontaneous emission spectra from light sources in photonic crystals. Physical Review A, 2005, 71, .	2.5	43
161	Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals. Nature, 2004, 430, 654-657.	27.8	1,089
162	Observation of spatial modulation instability in intracavity second-harmonic generation. Optics Letters, 2003, 28, 31.	3.3	6

#	Article	IF	Citations
163	Quantum teleportation of light beams. Physical Review A, 2003, 67, .	2.5	212
164	Einstein-Podolsky-Rosen correlations in second-harmonic generation. Physical Review A, 2003, 68, .	2.5	21
165	Observation of self-pulsing in singly resonant optical second-harmonic generation with competing nonlinearities. Physical Review A, 2002, 65, .	2.5	22
166	Spatial quantum noise in singly resonant second-harmonic generation. Optics Letters, 2002, 27, 110.	3.3	9
167	Spatial quantum noise in singly resonant second-harmonic generation: errata. Optics Letters, 2002, 27, 551.	3.3	5
168	Ultrasensitive pulsed, balanced homodyne detector:â€fapplication to time-domain quantum measurements. Optics Letters, 2001, 26, 1714.	3.3	110
169	Spatiotemporal structures in the internally pumped optical parametric oscillator. Physical Review A, 2001, 63, .	2.5	16
170	Nonlinear analysis of pattern formation in singly resonant second-harmonic generation. Optics Communications, 2000, 184, 493-505.	2.1	12
171	Modification of pattern formation in doubly resonant second-harmonic generation by competing parametric oscillation. Optics Letters, 2000, 25, 654.	3.3	21
172	Spiral Intensity Patterns in the Internally Pumped Optical Parametric Oscillator. Physical Review Letters, 2000, 85, 4506-4509.	7.8	20
173	Pattern formation in singly resonant second-harmonic generation with competing parametric oscillation. Physical Review A, 1999, 60, 3251-3261.	2.5	35
174	Transverse modulational instability of counterpropagating quasi-phase-matched beams in a quadratically nonlinear medium. Optics Letters, 1998, 23, 1650.	3.3	16
175	High efficiency second harmonic generation with a low power diode laser. Applied Physics B: Lasers and Optics, 1997, 64, 383-386.	2.2	20
176	Spatial patterns in second harmonic generation. , 0, , .		0