List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/686875/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multi-stimulus linear negative expansion of a breathing M(O ₂ CR) ₄ -node MOF. Faraday Discussions, 2021, 225, 133-151.	3.2	2
2	Post‣ynthetic Modification Unlocks a 2Dâ€ŧoâ€3D Switch in MOF Breathing Response: A Singleâ€Crystalâ€Diffraction Mapping Study. Angewandte Chemie, 2021, 133, 18064-18068.	2.0	1
3	Postâ€5ynthetic Modification Unlocks a 2Dâ€ŧoâ€3D Switch in MOF Breathing Response: A Singleâ€Crystalâ€Diffraction Mapping Study. Angewandte Chemie - International Edition, 2021, 60, 17920-17924.	13.8	13
4	Increasing Alkyl Chain Length in a Series of Layered Metal–Organic Frameworks Aids Ultrasonic Exfoliation to Form Nanosheets. Inorganic Chemistry, 2019, 58, 10837-10845.	4.0	23
5	Benchmarking of Halogen Bond Strength in Solution with Nickel Fluorides: Bromine versus Iodine and Perfluoroaryl versus Perfluoroalkyl Donors. Chemistry - A European Journal, 2019, 25, 9237-9241.	3.3	13
6	Encapsulation of Crabtree's Catalyst in Sulfonated MIL-101(Cr): Enhancement of Stability and Selectivity between Competing Reaction Pathways by the MOF Chemical Microenvironment. Angewandte Chemie, 2018, 130, 4622-4627.	2.0	7
7	Encapsulation of Crabtree's Catalyst in Sulfonated MILâ€101(Cr): Enhancement of Stability and Selectivity between Competing Reaction Pathways by the MOF Chemical Microenvironment. Angewandte Chemie - International Edition, 2018, 57, 4532-4537.	13.8	52
8	Fe(III) Protoporphyrin IX Encapsulated in a Zinc Metal–Organic Framework Shows Dramatically Enhanced Peroxidatic Activity. Inorganic Chemistry, 2018, 57, 1171-1183.	4.0	15
9	Self-complementary nickel halides enable multifaceted comparisons of intermolecular halogen bonds: fluoride ligands <i>vs.</i> other halides. Chemical Science, 2018, 9, 3767-3781.	7.4	27
10	Cocrystals of spironolactone and griseofulvin based on an in silico screening method. CrystEngComm, 2017, 19, 3592-3599.	2.6	39
11	Hydrogen bonding vs. halogen bonding: the solvent decides. Chemical Science, 2017, 8, 5392-5398.	7.4	176
12	Solvent-switchable continuous-breathing behaviour in a diamondoid metal–organic framework and its influence on CO2 versus CH4 selectivity. Nature Chemistry, 2017, 9, 882-889.	13.6	293
13	Arene guest selectivity and pore flexibility in a metal–organic framework with semi-fluorinated channel walls. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375, 20160031.	3.4	5
14	Halogen bonding, chalcogen bonding, pnictogen bonding, tetrel bonding: origins, current status and discussion. Faraday Discussions, 2017, 203, 485-507.	3.2	145
15	Coordination change, lability and hemilability in metal–organic frameworks. Chemical Society Reviews, 2017, 46, 5444-5462.	38.1	216
16	Highly selective detection of Hg ²⁺ and MeHgl by di-pyridin-2-yl-[4-(2-pyridin-4-yl-vinyl)-phenyl]-amine and its zinc coordination polymer. Inorganic Chemistry Frontiers, 2016, 3, 1297-1305.	6.0	56
17	Arene Selectivity by a Flexible Coordination Polymer Host. Chemistry - A European Journal, 2016, 22, 13120-13126.	3.3	17
18	Encapsulation of an organometallic cationic catalyst by direct exchange into an anionic MOF. Chemical Science, 2016, 7, 2037-2050.	7.4	57

#	Article	IF	CITATIONS
19	Coordination Polymer Flexibility Leads to Polymorphism and Enables a Crystalline Solid–Vapour Reaction: A Multiâ€ŧechnique Mechanistic Study. Chemistry - A European Journal, 2015, 21, 8799-8811.	3.3	25
20	The Contrasting Character of Early and Late Transition Metal Fluorides as Hydrogen Bond Acceptors. Journal of the American Chemical Society, 2015, 137, 11820-11831.	13.7	29
21	Solvent-vapour-assisted pathways and the role of pre-organization in solid-state transformations of coordination polymers. IUCrJ, 2015, 2, 188-197.	2.2	10
22	Metal Hydrides Form Halogen Bonds: Measurement of Energetics of Binding. Journal of the American Chemical Society, 2014, 136, 1288-1291.	13.7	35
23	Highly fluorinated naphthalenes and bifurcated C–H⋯F–C hydrogen bonding. CrystEngComm, 2014, 16, 9711-9720.	2.6	21
24	A solvent-resistant halogen bond. Chemical Science, 2014, 5, 4179-4183.	7.4	122
25	Crystallographic studies of gas sorption in metal–organic frameworks. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2014, 70, 404-422.	1.1	79
26	Chemical transformations of a crystalline coordination polymer: a multi-stage solid–vapour reaction manifold. Chemical Science, 2013, 4, 696-708.	7.4	35
27	Zipping and Unzipping of a Paddlewheel Metal–Organic Framework to Enable Two‧tep Synthetic and Structural Transformation. Chemistry - A European Journal, 2013, 19, 3552-3557.	3.3	28
28	Persistent C–Iâ‹⁻Ï€ halogen-bonded layer motifs involving 4-iodobenzoate paddlewheel units, Cu2(4-lbz)4(L)2. CrystEngComm, 2013, 15, 3160.	2.6	18
29	Coordination chemistry meets halogen bonding and hydrogen bonding: building networks from 3-iodobenzoate paddlewheel units [Cu2(3-lbz)4(L)2]. CrystEngComm, 2013, 15, 3151.	2.6	29
30	One-dimensional organization of free radicals via halogen bonding. CrystEngComm, 2012, 14, 6381.	2.6	30
31	Cyanometallates as Halogen Bond Acceptors. Crystal Growth and Design, 2012, 12, 205-216.	3.0	81
32	Tuning the magneto-structural properties of non-porous coordination polymers by HCl chemisorption. Nature Communications, 2012, 3, 828.	12.8	99
33	Diiodoacetylene: compact, strong ditopic halogen bond donor. CrystEngComm, 2012, 14, 3033.	2.6	60
34	Synthesis and polymorphism of (4-ClpyH)2[CuCl4]: solid–gas and solid–solid reactions. CrystEngComm, 2011, 13, 3189-3196.	2.6	38
35	Different structural destinations: comparing reactions of [CuBr2(3-Brpy)2] crystals with HBr and HCl gas. CrystEngComm, 2011, 13, 4400.	2.6	22
36	Energetics of Halogen Bonding of Group 10 Metal Fluoride Complexes. Journal of the American Chemical Society, 2011, 133, 14338-14348.	13.7	64

#	Article	IF	CITATIONS
37	Mechanistic Insights into a Gas–Solid Reaction in Molecular Crystals: The Role of Hydrogen Bonding. Angewandte Chemie - International Edition, 2010, 49, 8892-8896.	13.8	59
38	Effects of halogen bonding in ferromagnetic chains based on Co(ii) coordination polymers. CrystEngComm, 2010, 12, 2339.	2.6	43
39	Rational Modification of the Hierarchy of Intermolecular Interactions in Molecular Crystal Structures by Using Tunable Halogen Bonds. Chemistry - A European Journal, 2009, 15, 7554-7568.	3.3	164
40	Halogen Bonded Supramolecular Assemblies of [Ru(bipy)(CN) ₄] ^{2â^'} Anions and <i>N</i> -Methyl-Halopyridinium Cations in the Solid State and in Solution. Inorganic Chemistry, 2009, 48, 1666-1677.	4.0	86
41	Ligand Substitution within Nonporous Crystals of a Coordination Polymer: Elimination from and Insertion into AgO Bonds by Alcohol Molecules in a Solid–Vapor Reaction. Angewandte Chemie - International Edition, 2008, 47, 1693-1697.	13.8	65
42	Noncovalent Interactions under Extreme Conditions: High-Pressure and Low-Temperature Diffraction Studies of the Isostructural Metalâ^Organic Networks (4-Chloropyridinium) ₂ [CoX ₄] (X = Cl, Br). Journal of the American Chemical Society. 2008, 130, 9058-9071.	13.7	82
43	Competition between coordination network and halogen bond network formation: towards halogen-bond functionalised network materials using copper-iodobenzoate units. CrystEngComm, 2008, 10, 1335.	2.6	34
44	Combining metals with halogen bonds. CrystEngComm, 2008, 10, 1712.	2.6	300
45	Metal Fluorides Form Strong Hydrogen Bonds and Halogen Bonds: Measuring Interaction Enthalpies and Entropies in Solution. Journal of the American Chemical Society, 2008, 130, 7842-7844.	13.7	143
46	Ligand flexibility and framework rearrangement in a new family of porous metal–organic frameworks. Chemical Communications, 2007, , 1532-1534.	4.1	73
47	Reversible Gas Uptake by a Nonporous Crystalline Solid Involving Multiple Changes in Covalent Bonding. Journal of the American Chemical Society, 2007, 129, 15606-15614.	13.7	82
48	Mâ^'X···Xâ€~ã^'C Halogen-Bonded Network Formation in MX2(4-halopyridine)2 Complexes (M = Pd, Pt; X = Cl,	l;) Tj ETQ	q0,0 0 rgBT /
49	Solvent hydrolysis leads to an unusual Cu(ii) metal–organic framework. CrystEngComm, 2006, 8, 473.	2.6	50
50	Unexpected structural homologies involving hydrogen-bonded and halogen-bonded networks in halopyridinium halometallate salts. CrystEngComm, 2006, 8, 425.	2.6	51
51	Designing Intermolecular Interactions between Halogenated Peripheries of Inorganic and Organic Molecules: Electrostatically Directed Mĩ£¿Xâ‹â‹X′ĩ£¿C Halogen Bonds. Angewandte Chemie - Internatior Edition, 2006, 45, 435-440.	nal3.8	152
52	New trends in crystal engineering. CrystEngComm, 2005, 7, 1.	2.6	412
53	Supramolecular Chemistry of Halogens:  Complementary Features of Inorganic (Mâ^'X) and Organic (Câ^'Xâ€~) Halogens Applied to Mâ^'X···Xâ€~ã~'C Halogen Bond Formation. Journal of the American Chemical Society, 2005, 127, 5979-5989.	13.7	365
54	Halometallate and halide ions: nucleophiles in competition for hydrogen bond and halogen bond formation in halopyridinium salts of mixed halide–halometallate anions. CrystEngComm, 2005, 7, 350.	2.6	75

#	Article	IF	CITATIONS
55	Water molecules insert into N—HCl—M hydrogen bonds while M—ClX—C halogen bonds remain intact in dihydrates of halopyridinium hexachloroplatinates. Acta Crystallographica Section B: Structural Science, 2004, 60, 512-519.	1.8	41
56	Developments in inorganic crystal engineering. Chemical Society Reviews, 2004, 33, 476.	38.1	685
57	Metals and hydrogen bonds. Dalton Transactions, 2003, , 3145.	3.3	359
58	Hydrogen bond patterns in aromatic and aliphatic dioximes. New Journal of Chemistry, 2003, 27, 1084-1094.	2.8	56
59	Involving metals in halogen–halogen interactions: second-sphere Lewis acid ligands for perhalometallate ions (M–Xâ <z‰–c). 2003,="" 343-345.<="" 5,="" crystengcomm,="" td=""><td>2.6</td><td>100</td></z‰–c).>	2.6	100
60	Binding Studies on the Control of the Conformation and Self-assembly of a Calix[4]arenedicarboxylic Acid through Hydrogen Bonding Interactions. Supramolecular Chemistry, 2003, 15, 385-390.	1.2	7
61	Hydrogen Bonds in Inorganic Chemistry: Application to Crystal Design. Perspectives in Supramolecular Chemistry, 2003, , 1-75.	0.1	22
62	Designing neutral coordination networks with the aid of hydrogen bond mimicry using silver(i) carboxylates. CrystEngComm, 2002, 4, 239-248.	2.6	54
63	Bridging mode flexibility of 1,3-dithiacyclohexane in silver(i) co-ordination polymers. Dalton Transactions RSC, 2002, , 4134.	2.3	14
64	Hydrogen bonding and perhalometallate ions: A supramolecular synthetic strategy for new inorganic materials. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 4956-4961.	7.1	126
65	Silver(I) carboxylates: versatile inorganic analogs of carboxylic acids for supramolecular network formation. Chemical Communications, 2001, , 2468-2469.	4.1	65
66	Understanding the Behavior of Halogens as Hydrogen Bond Acceptors. Crystal Growth and Design, 2001, 1, 277-290.	3.0	631
67	Synthesis and characterization of sterically hindered diarylsilanes containing 2,4,6-trimethylphenyl and 2,4,6-tris(trifluoromethyl)phenyl substituents. X-ray crystal structure of bis[2,4,6-tris(trifluoromethylphenyl)]fluorosilane. Journal of Organometallic Chemistry, 1995, 499, 89-98.	1.8	24
68	Supplement. Tables of bond lengths determined by X-ray and neutron diffraction. Part 2. Organometallic compounds and co-ordination complexes of the d- and f-block metals. Journal of the Chemical Society Dalton Transactions, 1989, , S1.	1.1	1,165
69	Diffraction Studies in Crystal Engineering. , 0, , 241-265.		0