Lee Brammer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/686875/publications.pdf

Version: 2024-02-01

69 papers

7,676 citations

76326 40 h-index 71 g-index

72 all docs

72 docs citations

72 times ranked 6974 citing authors

#	Article	IF	CITATIONS
1	Supplement. Tables of bond lengths determined by X-ray and neutron diffraction. Part 2. Organometallic compounds and co-ordination complexes of the d- and f-block metals. Journal of the Chemical Society Dalton Transactions, 1989, , S1.	1.1	1,165
2	Developments in inorganic crystal engineering. Chemical Society Reviews, 2004, 33, 476.	38.1	685
3	Understanding the Behavior of Halogens as Hydrogen Bond Acceptors. Crystal Growth and Design, 2001, 1, 277-290.	3.0	631
4	New trends in crystal engineering. CrystEngComm, 2005, 7, 1.	2.6	412
5	Supramolecular Chemistry of Halogens:  Complementary Features of Inorganic (Mâ^'X) and Organic (Câ^'X') Halogens Applied to Mâ^'X···X'â^'C Halogen Bond Formation. Journal of the American Chemical Society, 2005, 127, 5979-5989.	13.7	365
6	Metals and hydrogen bonds. Dalton Transactions, 2003, , 3145.	3.3	359
7	Combining metals with halogen bonds. CrystEngComm, 2008, 10, 1712.	2.6	300
8	Solvent-switchable continuous-breathing behaviour in a diamondoid metal–organic framework and its influence on CO2 versus CH4 selectivity. Nature Chemistry, 2017, 9, 882-889.	13.6	293
9	Coordination change, lability and hemilability in metal–organic frameworks. Chemical Society Reviews, 2017, 46, 5444-5462.	38.1	216
10	Hydrogen bonding vs. halogen bonding: the solvent decides. Chemical Science, 2017, 8, 5392-5398.	7.4	176
11	Rational Modification of the Hierarchy of Intermolecular Interactions in Molecular Crystal Structures by Using Tunable Halogen Bonds. Chemistry - A European Journal, 2009, 15, 7554-7568.	3.3	164
12	Designing Intermolecular Interactions between Halogenated Peripheries of Inorganic and Organic Molecules: Electrostatically Directed MXâ‹â‹â‹X′C Halogen Bonds. Angewandte Chemie - Internatio Edition, 2006, 45, 435-440.	nal3.8	152
13	Halogen bonding, chalcogen bonding, pnictogen bonding, tetrel bonding: origins, current status and discussion. Faraday Discussions, 2017, 203, 485-507.	3.2	145
14	Metal Fluorides Form Strong Hydrogen Bonds and Halogen Bonds: Measuring Interaction Enthalpies and Entropies in Solution. Journal of the American Chemical Society, 2008, 130, 7842-7844.	13.7	143
15	Hydrogen bonding and perhalometallate ions: A supramolecular synthetic strategy for new inorganic materials. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 4956-4961.	7.1	126
16	A solvent-resistant halogen bond. Chemical Science, 2014, 5, 4179-4183.	7.4	122
17	Involving metals in halogen–halogen interactions: second-sphere Lewis acid ligands for perhalometallate ions (M–Xâ∈²â€"C). CrystEngComm, 2003, 5, 343-345.	2.6	100
18	Tuning the magneto-structural properties of non-porous coordination polymers by HCl chemisorption. Nature Communications, 2012, 3, 828.	12.8	99

#	Article	IF	CITATIONS
19	Halogen Bonded Supramolecular Assemblies of [Ru(bipy)(CN) $<$ sub $>4<$ sub $>$] $<$ sup >2 â $^{\circ}<$ sup $>$ Anions and $<$ i $>N<$ i> $>$ Methyl-Halopyridinium Cations in the Solid State and in Solution. Inorganic Chemistry, 2009, 48, 1666-1677.	4.0	86
20	Reversible Gas Uptake by a Nonporous Crystalline Solid Involving Multiple Changes in Covalent Bonding. Journal of the American Chemical Society, 2007, 129, 15606-15614.	13.7	82
21	Noncovalent Interactions under Extreme Conditions: High-Pressure and Low-Temperature Diffraction Studies of the Isostructural Metalâ°Organic Networks (4-Chloropyridinium) ₂ [CoX ₄] (X = Cl, Br). Journal of the American Chemical Society. 2008, 130, 9058-9071.	13.7	82
22	Cyanometallates as Halogen Bond Acceptors. Crystal Growth and Design, 2012, 12, 205-216.	3.0	81
23	Crystallographic studies of gas sorption in metal–organic frameworks. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2014, 70, 404-422.	1.1	79
24	Halometallate and halide ions: nucleophiles in competition for hydrogen bond and halogen bond formation in halopyridinium salts of mixed halide–halometallate anions. CrystEngComm, 2005, 7, 350.	2.6	75
25	Ligand flexibility and framework rearrangement in a new family of porous metal–organic frameworks. Chemical Communications, 2007, , 1532-1534.	4.1	73
26	Mâ^'X···Xâ€~ã^'C Halogen-Bonded Network Formation in MX2(4-halopyridine)2 Complexes (M = Pd, Pt; X = C	Cl, I;) Tj ETC	2q0,0 0 rgBT
27	Silver(I) carboxylates: versatile inorganic analogs of carboxylic acids for supramolecular network formation. Chemical Communications, 2001, , 2468-2469.	4.1	65
28	Ligand Substitution within Nonporous Crystals of a Coordination Polymer: Elimination from and Insertion into Agi£¿O Bonds by Alcohol Molecules in a Solid–Vapor Reaction. Angewandte Chemie - International Edition, 2008, 47, 1693-1697.	13.8	65
29	Energetics of Halogen Bonding of Group 10 Metal Fluoride Complexes. Journal of the American Chemical Society, 2011, 133, 14338-14348.	13.7	64
30	Diiodoacetylene: compact, strong ditopic halogen bond donor. CrystEngComm, 2012, 14, 3033.	2.6	60
31	Mechanistic Insights into a Gas–Solid Reaction in Molecular Crystals: The Role of Hydrogen Bonding. Angewandte Chemie - International Edition, 2010, 49, 8892-8896.	13.8	59
32	Encapsulation of an organometallic cationic catalyst by direct exchange into an anionic MOF. Chemical Science, 2016, 7, 2037-2050.	7.4	57
33	Hydrogen bond patterns in aromatic and aliphatic dioximes. New Journal of Chemistry, 2003, 27, 1084-1094.	2.8	56
34	Highly selective detection of Hg ²⁺ and MeHgI by di-pyridin-2-yl-[4-(2-pyridin-4-yl-vinyl)-phenyl]-amine and its zinc coordination polymer. Inorganic Chemistry Frontiers, 2016, 3, 1297-1305.	6.0	56
35	Designing neutral coordination networks with the aid of hydrogen bond mimicry using silver(i) carboxylates. CrystEngComm, 2002, 4, 239-248.	2.6	54
36	Encapsulation of Crabtree's Catalyst in Sulfonated MILâ€101(Cr): Enhancement of Stability and Selectivity between Competing Reaction Pathways by the MOF Chemical Microenvironment. Angewandte Chemie - International Edition, 2018, 57, 4532-4537.	13.8	52

#	Article	IF	CITATIONS
37	Unexpected structural homologies involving hydrogen-bonded and halogen-bonded networks in halopyridinium halometallate salts. CrystEngComm, 2006, 8, 425.	2.6	51
38	Solvent hydrolysis leads to an unusual Cu(ii) metal–organic framework. CrystEngComm, 2006, 8, 473.	2.6	50
39	Effects of halogen bonding in ferromagnetic chains based on Co(ii) coordination polymers. CrystEngComm, 2010, 12, 2339.	2.6	43
40	Water molecules insert into N—HCl—M hydrogen bonds while M—ClX—C halogen bonds remain intact in dihydrates of halopyridinium hexachloroplatinates. Acta Crystallographica Section B: Structural Science, 2004, 60, 512-519.	1.8	41
41	Cocrystals of spironolactone and griseofulvin based on an in silico screening method. CrystEngComm, 2017, 19, 3592-3599.	2.6	39
42	Synthesis and polymorphism of (4-ClpyH)2[CuCl4]: solid–gas and solid–solid reactions. CrystEngComm, 2011, 13, 3189-3196.	2.6	38
43	Chemical transformations of a crystalline coordination polymer: a multi-stage solid–vapour reaction manifold. Chemical Science, 2013, 4, 696-708.	7.4	35
44	Metal Hydrides Form Halogen Bonds: Measurement of Energetics of Binding. Journal of the American Chemical Society, 2014, 136, 1288-1291.	13.7	35
45	Competition between coordination network and halogen bond network formation: towards halogen-bond functionalised network materials using copper-iodobenzoate units. CrystEngComm, 2008, 10, 1335.	2.6	34
46	One-dimensional organization of free radicals via halogen bonding. CrystEngComm, 2012, 14, 6381.	2.6	30
47	Coordination chemistry meets halogen bonding and hydrogen bonding: building networks from 3-iodobenzoate paddlewheel units [Cu2(3-lbz)4(L)2]. CrystEngComm, 2013, 15, 3151.	2.6	29
48	The Contrasting Character of Early and Late Transition Metal Fluorides as Hydrogen Bond Acceptors. Journal of the American Chemical Society, 2015, 137, 11820-11831.	13.7	29
49	Zipping and Unzipping of a Paddlewheel Metal–Organic Framework to Enable Twoâ€Step Synthetic and Structural Transformation. Chemistry - A European Journal, 2013, 19, 3552-3557.	3.3	28
50	Self-complementary nickel halides enable multifaceted comparisons of intermolecular halogen bonds: fluoride ligands <i>vs.</i> other halides. Chemical Science, 2018, 9, 3767-3781.	7.4	27
51	Coordination Polymer Flexibility Leads to Polymorphism and Enables a Crystalline Solid–Vapour Reaction: A Multiâ€technique Mechanistic Study. Chemistry - A European Journal, 2015, 21, 8799-8811.	3.3	25
52	Synthesis and characterization of sterically hindered diarylsilanes containing 2,4,6-trimethylphenyl and 2,4,6-tris(trifluoromethyl)phenyl substituents. X-ray crystal structure of bis[2,4,6-tris(trifluoromethylphenyl)]fluorosilane. Journal of Organometallic Chemistry, 1995, 499, 89-98.	1.8	24
53	Increasing Alkyl Chain Length in a Series of Layered Metal–Organic Frameworks Aids Ultrasonic Exfoliation to Form Nanosheets. Inorganic Chemistry, 2019, 58, 10837-10845.	4.0	23
54	Hydrogen Bonds in Inorganic Chemistry: Application to Crystal Design. Perspectives in Supramolecular Chemistry, 2003, , 1 -75.	0.1	22

#	Article	IF	CITATIONS
55	Different structural destinations: comparing reactions of [CuBr2(3-Brpy)2] crystals with HBr and HCl gas. CrystEngComm, 2011, 13, 4400.	2.6	22
56	Highly fluorinated naphthalenes and bifurcated C–Hâ√F–C hydrogen bonding. CrystEngComm, 2014, 16, 9711-9720.	2.6	21
57	Persistent C–Iâ<Ï€ halogen-bonded layer motifs involving 4-iodobenzoate paddlewheel units, Cu2(4-lbz)4(L)2. CrystEngComm, 2013, 15, 3160.	2.6	18
58	Arene Selectivity by a Flexible Coordination Polymer Host. Chemistry - A European Journal, 2016, 22, 13120-13126.	3.3	17
59	Fe(III) Protoporphyrin IX Encapsulated in a Zinc Metal–Organic Framework Shows Dramatically Enhanced Peroxidatic Activity. Inorganic Chemistry, 2018, 57, 1171-1183.	4.0	15
60	Bridging mode flexibility of 1,3-dithiacyclohexane in silver(i) co-ordination polymers. Dalton Transactions RSC, 2002, , 4134.	2.3	14
61	Benchmarking of Halogen Bond Strength in Solution with Nickel Fluorides: Bromine versus lodine and Perfluoroaryl versus Perfluoroalkyl Donors. Chemistry - A European Journal, 2019, 25, 9237-9241.	3.3	13
62	Postâ€Synthetic Modification Unlocks a 2Dâ€toâ€3D Switch in MOF Breathing Response: A Singleâ€Crystalâ€Diffraction Mapping Study. Angewandte Chemie - International Edition, 2021, 60, 17920-17924.	13.8	13
63	Solvent-vapour-assisted pathways and the role of pre-organization in solid-state transformations of coordination polymers. IUCrJ, 2015, 2, 188-197.	2.2	10
64	Binding Studies on the Control of the Conformation and Self-assembly of a Calix[4]arenedicarboxylic Acid through Hydrogen Bonding Interactions. Supramolecular Chemistry, 2003, 15, 385-390.	1.2	7
65	Encapsulation of Crabtree's Catalyst in Sulfonated MIL-101(Cr): Enhancement of Stability and Selectivity between Competing Reaction Pathways by the MOF Chemical Microenvironment. Angewandte Chemie, 2018, 130, 4622-4627.	2.0	7
66	Arene guest selectivity and pore flexibility in a metal–organic framework with semi-fluorinated channel walls. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375, 20160031.	3.4	5
67	Multi-stimulus linear negative expansion of a breathing M(O ₂ CR) ₄ -node MOF. Faraday Discussions, 2021, 225, 133-151.	3.2	2
68	Postâ€Synthetic Modification Unlocks a 2Dâ€toâ€3D Switch in MOF Breathing Response: A Singleâ€Crystalâ€Diffraction Mapping Study. Angewandte Chemie, 2021, 133, 18064-18068.	2.0	1
69	Diffraction Studies in Crystal Engineering. , 0, , 241-265.		O