
Marina Y Konopleva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6867990/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Validation of the ALFA-1200 model in older patients with AML treated with intensive chemotherapy. Blood Advances, 2023, 7, 828-831.	2.5	1
2	SOHO State of the Art Updates and Next Questions: Harnessing Apoptosis in AML. Clinical Lymphoma, Myeloma and Leukemia, 2022, 22, 133-139.	0.2	4
3	Allogeneic hematopoietic cell transplantation for patients with blastic plasmacytoid dendritic cell neoplasm (BPDCN). Bone Marrow Transplantation, 2022, 57, 51-56.	1.3	19
4	Prediction of early (4â€week) mortality in acute myeloid leukemia with intensive chemotherapy. American Journal of Hematology, 2022, 97, 68-78.	2.0	25
5	Venetoclax and hypomethylating agents in older/unfit patients with blastic plasmacytoid dendritic cell neoplasm. American Journal of Hematology, 2022, 97, E62.	2.0	17
6	Sex-Biased <i>ZRSR2</i> Mutations in Myeloid Malignancies Impair Plasmacytoid Dendritic Cell Activation and Apoptosis. Cancer Discovery, 2022, 12, 522-541.	7.7	44
7	Efficacy and safety of enasidenib and azacitidine combination in patients with IDH2 mutated acute myeloid leukemia and not eligible for intensive chemotherapy. Blood Cancer Journal, 2022, 12, 10.	2.8	48
8	Characteristics and outcomes of patients with blastic plasmacytoid dendritic cell neoplasm treated with frontline HCVAD. Blood Advances, 2022, 6, 3027-3035.	2.5	17
9	How We Incorporate Venetoclax in Treatment Regimens for Acute Myeloid Leukemia. Cancer Journal (Sudbury, Mass), 2022, 28, 2-13.	1.0	13
10	Impact of <i>F LT3</i> Mutation on Outcomes after Venetoclax and Azacitidine for Patients with Treatment-NaĀ ⁻ ve Acute Myeloid Leukemia. Clinical Cancer Research, 2022, 28, 2744-2752.	3.2	43
11	Improved outcomes among newly diagnosed patients with <scp>FMSâ€like tyrosine kinase 3 internal tandem duplication</scp> mutated acute myeloid leukemia treated with contemporary therapy: Revisiting the European LeukemiaNet adverse risk classification. American Journal of Hematology, 2022, 97, 329-337.	2.0	15
12	Inhibition of BCL2A1 by STAT5 inactivation overcomes resistance to targeted therapies of FLT3-ITD/D835 mutant AML. Translational Oncology, 2022, 18, 101354.	1.7	9
13	Genetic correlates in patients with Philadelphia chromosome-positive acute lymphoblastic leukemia treated with Hyper-CVAD plus dasatinib or ponatinib. Leukemia, 2022, 36, 1253-1260.	3.3	9
14	Targeting the NOTCH1-MYC-CD44 axis in leukemia-initiating cells in T-ALL. Leukemia, 2022, 36, 1261-1273.	3.3	12
15	Activation of RAS/MAPK pathway confers MCL-1 mediated acquired resistance to BCL-2 inhibitor venetoclax in acute myeloid leukemia. Signal Transduction and Targeted Therapy, 2022, 7, 51.	7.1	54
16	Validation of ALFA 1200 score in patients with AML >60 years treated with double nucleoside–based low-intensity therapy. Blood Advances, 2022, 6, 5546-5549.	2.5	1
17	Dismal outcomes of patients with relapsed/refractory Philadelphia chromosomeâ€negative Bâ€cell acute lymphoblastic leukemia after failure of both inotuzumab ozogamicin and blinatumomab. American Journal of Hematology, 2022, 97, .	2.0	7
18	Evidence supporting a role for the immune checkpoint protein B7-H3 in NK cell-mediated cytotoxicity against AML. Blood, 2022, 139, 2782-2796.	0.6	11

#	Article	IF	CITATIONS
19	<scp>Treatmentâ€free</scp> remission in patients with chronic myeloid leukemia following the discontinuation of tyrosine kinase inhibitors. American Journal of Hematology, 2022, 97, 856-864.	2.0	33
20	Prediction of survival with intensive chemotherapy in acute myeloid leukemia. American Journal of Hematology, 2022, 97, 865-876.	2.0	12
21	SOHO State of the Art Updates and Next Questions Beyond BCL-2 Inhibition in Acute Myeloid Leukemia: Other Approaches to Leverage the Apoptotic Pathway. Clinical Lymphoma, Myeloma and Leukemia, 2022, 22, 652-658.	0.2	9
22	Targeting the NRF2/HO-1 Antioxidant Pathway in FLT3-ITD-Positive AML Enhances Therapy Efficacy. Antioxidants, 2022, 11, 717.	2.2	13
23	Idasanutlin Plus Cytarabine in Relapsed or Refractory Acute Myeloid Leukemia: Results of the MIRROS Trial. Blood Advances, 2022, , .	2.5	13
24	Urgent cytoreduction for newly diagnosed acute myeloid leukemia patients allows acquisition of pretreatment genomic data and enrollment on investigational clinical trials. American Journal of Hematology, 2022, 97, 885-894.	2.0	4
25	A multi-arm phase Ib/II study designed for rapid, parallel evaluation of novel immunotherapy combinations in relapsed/refractory acute myeloid leukemia. Leukemia and Lymphoma, 2022, 63, 2161-2170.	0.6	12
26	Pneumonitis after immune checkpoint inhibitor therapies in patients with acute myeloid leukemia: A retrospective cohort study. Cancer, 2022, 128, 2736-2745.	2.0	8
27	Targeting CD123 in blastic plasmacytoid dendritic cell neoplasm using allogeneic anti-CD123 CAR T cells. Nature Communications, 2022, 13, 2228.	5.8	14
28	Venetoclax combined with induction chemotherapy in patients with newly diagnosed acute myeloid leukaemia: a post-hoc, propensity score-matched, cohort study. Lancet Haematology,the, 2022, 9, e350-e360.	2.2	26
29	Hypomethylating agent and venetoclax with FLT3 inhibitor "triplet―therapy in older/unfit patients with FLT3 mutated AML. Blood Cancer Journal, 2022, 12, 77.	2.8	33
30	High-sensitivity next-generation sequencing MRD assessment in ALL identifies patients at very low risk of relapse. Blood Advances, 2022, 6, 4006-4014.	2.5	37
31	Treatment-free remission after ceasing venetoclax-based therapy in patients with acute myeloid leukemia. Blood Advances, 2022, 6, 3879-3883.	2.5	25
32	Venetoclax combined with <scp>FLAGâ€IDA</scp> induction and consolidation in newly diagnosed acute myeloid leukemia. American Journal of Hematology, 2022, 97, 1035-1043.	2.0	31
33	Inhibition of mitochondrial complex I reverses NOTCH1-driven metabolic reprogramming in T-cell acute lymphoblastic leukemia. Nature Communications, 2022, 13, 2801.	5.8	25
34	Acute myeloid leukemia: therapeutic targeting of stem cells. Expert Opinion on Therapeutic Targets, 2022, 26, 547-556.	1.5	6
35	Application of precision medicine in clinical routine in haematology—Challenges and opportunities. Journal of Internal Medicine, 2022, 292, 243-261.	2.7	12
36	Resistance to targeted therapies: delving into FLT3 and IDH. Blood Cancer Journal, 2022, 12, .	2.8	9

#	Article	IF	CITATIONS
37	Novel mitochondria-targeting compounds selectively kill human leukemia cells. Leukemia, 2022, 36, 2009-2021.	3.3	4
38	Phase II Study of Venetoclax Added to Cladribine Plus Low-Dose Cytarabine Alternating With 5-Azacitidine in Older Patients With Newly Diagnosed Acute Myeloid Leukemia. Journal of Clinical Oncology, 2022, 40, 3848-3857.	0.8	41
39	Long-Term Benefits of Tagraxofusp for Patients With Blastic Plasmacytoid Dendritic Cell Neoplasm. Journal of Clinical Oncology, 2022, 40, 3032-3036.	0.8	19
40	Venetoclax combines synergistically with FLT3 inhibition to effectively target leukemic cells in FLT3-ITD+ acute myeloid leukemia models. Haematologica, 2021, 106, 1034-1046.	1.7	75
41	Clinical outcomes and influence of mutation clonal dominance in oligomonocytic and classical chronic myelomonocytic leukemia. American Journal of Hematology, 2021, 96, E50-E53.	2.0	8
42	Incidence of tumor lysis syndrome in patients with acute myeloid leukemia undergoing lowâ€intensity induction with venetoclax. American Journal of Hematology, 2021, 96, E65-E68.	2.0	7
43	Venetoclax with decitabine vs intensive chemotherapy in acute myeloid leukemia: A propensity score matched analysis stratified by risk of treatmentâ€related mortality. American Journal of Hematology, 2021, 96, 282-291.	2.0	59
44	<i>GATA3</i> rs3824662A allele in B ell acute lymphoblastic leukemia in adults, adolescents and young adults: association with <i>CRLF2</i> rearrangement and poor prognosis. American Journal of Hematology, 2021, 96, E71-E74.	2.0	5
45	Patterns of Resistance Differ in Patients with Acute Myeloid Leukemia Treated with Type I versus Type II FLT3 Inhibitors. Blood Cancer Discovery, 2021, 2, 125-134.	2.6	50
46	The LEukemia Artificial Intelligence Program (LEAP) in chronic myeloid leukemia in chronic phase: A model to improve patient outcomes. American Journal of Hematology, 2021, 96, 241-250.	2.0	19
47	Expression of BCL2 alternative proteins and association with outcome in CLL patients treated with venetoclax. Leukemia and Lymphoma, 2021, 62, 1129-1135.	0.6	6
48	Venetoclax with azacitidine or decitabine in patients with newly diagnosed acute myeloid leukemia: Long term followâ€up from a phase 1b study. American Journal of Hematology, 2021, 96, 208-217.	2.0	95
49	Targeting a cytokine checkpoint enhances the fitness of armored cord blood CAR-NK cells. Blood, 2021, 137, 624-636.	0.6	147
50	Network-based systems pharmacology reveals heterogeneity in LCK and BCL2 signaling and therapeutic sensitivity of T-cell acute lymphoblastic leukemia. Nature Cancer, 2021, 2, 284-299.	5.7	70
51	Flow cytometric immunophenotypic alterations of persistent clonal haematopoiesis in remission bone marrows of patients with <i>NPM1</i> â€mutated acute myeloid leukaemia. British Journal of Haematology, 2021, 192, 1054-1063.	1.2	28
52	Triplet therapy with venetoclax, FLT3 inhibitor and decitabine for FLT3-mutated acute myeloid leukemia. Blood Cancer Journal, 2021, 11, 25.	2.8	85
53	Acute myeloid leukemia: current progress and future directions. Blood Cancer Journal, 2021, 11, 41.	2.8	313
54	Concurrent inhibition of IDH and methyltransferase maximizes therapeutic efficacy in IDH mutant acute myeloid leukemia. Haematologica, 2021, 106, 324-326.	1.7	7

#	Article	IF	CITATIONS
55	Decitabine and venetoclax for <i><scp>IDH1/2</scp>â€</i> mutated acute myeloid leukemia. American Journal of Hematology, 2021, 96, E154-E157.	2.0	19
56	Venetoclax enhances T cell-mediated anti-leukemic activity by increasing ROS production. Blood, 2021, 138, 234-245.	0.6	74
57	Nivolumab maintenance in high-risk acute myeloid leukemia patients: a single-arm, open-label, phase II study. Blood Cancer Journal, 2021, 11, 60.	2.8	22
58	Outcomes in patients with CRLF2 overexpressed acute lymphoblastic leukemia after allogeneic hematopoietic cell transplantation. Bone Marrow Transplantation, 2021, 56, 1746-1749.	1.3	5
59	Outcome of Tâ€cell acute lymphoblastic leukemia/lymphoma: Focus on <scp>nearâ€ETP</scp> phenotype and differential impact of nelarabine. American Journal of Hematology, 2021, 96, 589-598.	2.0	42
60	Mitochondrial metabolism supports resistance to IDH mutant inhibitors in acute myeloid leukemia. Journal of Experimental Medicine, 2021, 218, .	4.2	56
61	New Treatment Options for Older Patients with Acute Myeloid Leukemia. Current Treatment Options in Oncology, 2021, 22, 39.	1.3	10
62	Mechanisms for resistance in AML insights into molecular pathways mediating resistance to venetoclax. Best Practice and Research in Clinical Haematology, 2021, 34, 101251.	0.7	13
63	High-throughput proteomic profiling reveals mechanisms of action of AMG925, a dual FLT3-CDK4/6 kinase inhibitor targeting AML and AML stem/progenitor cells. Annals of Hematology, 2021, 100, 1485-1496.	0.8	4
64	Impact of splicing mutations in acute myeloid leukemia treated with hypomethylating agents combined with venetoclax. Blood Advances, 2021, 5, 2173-2183.	2.5	35
65	Single-center experience with venetoclax combinations in patients with newly diagnosed and relapsed AML evolving from MPNs. Blood Advances, 2021, 5, 2156-2164.	2.5	33
66	A phase I/II study of the combination of quizartinib with azacitidine or low-dose cytarabine for the treatment of patients with acute myeloid leukemia and myelodysplastic syndrome. Haematologica, 2021, 106, 2121-2130.	1.7	34
67	Prognostic factors for progression in patients with Philadelphia chromosomeâ€positive acute lymphoblastic leukemia in complete molecular response within 3 months of therapy with tyrosine kinase inhibitors. Cancer, 2021, 127, 2648-2656.	2.0	33
68	An effective chemotherapyâ€free regimen of ponatinib plus venetoclax for relapsed/refractory <scp>P</scp> hiladelphia chromosomeâ€positive acute lymphoblastic leukemia. American Journal of Hematology, 2021, 96, E229-E232.	2.0	17
69	Prognostic value of measurable residual disease after venetoclax and decitabine in acute myeloid leukemia. Blood Advances, 2021, 5, 1876-1883.	2.5	56
70	Activity of venetoclax-based therapy in chronic myelomonocytic leukemia. Leukemia, 2021, 35, 1494-1499.	3.3	16
71	Leukemia stemness and co-occurring mutations drive resistance to IDH inhibitors in acute myeloid leukemia. Nature Communications, 2021, 12, 2607.	5.8	61
72	<scp>FLT3</scp> inhibitor based induction and allogeneic stem cell transplant in complete remission 1 improve outcomes in patients with newly diagnosed <scp>Acute Myeloid Leukemia</scp> with very low <scp>FLT3</scp> allelic burden. American Journal of Hematology, 2021, 96, E275-E279.	2.0	3

#	Article	IF	CITATIONS
73	Inotuzumab ozogamicin with bosutinib for relapsed or refractory Philadelphia chromosome positive acute lymphoblastic leukemia or lymphoid blast phase of chronic myeloid leukemia. American Journal of Hematology, 2021, 96, 1000-1007.	2.0	23
74	lbrutinib, fludarabine, cyclophosphamide, and obinutuzumab (iFCG) regimen for chronic lymphocytic leukemia (CLL) with mutated IGHV and without TP53 aberrations. Leukemia, 2021, 35, 3421-3429.	3.3	22
75	Longâ€ŧerm results of lowâ€intensity chemotherapy with clofarabine or cladribine combined with lowâ€dose cytarabine alternating with decitabine in older patients with newly diagnosed acute myeloid leukemia. American Journal of Hematology, 2021, 96, 914-924.	2.0	13
76	Central nervous system involvement in blastic plasmacytoid dendritic cell neoplasm. Blood, 2021, 138, 1373-1377.	0.6	31
77	Break the lifeline of AML cells. Blood, 2021, 137, 3465-3467.	0.6	3
78	Impact of frontline treatment approach on outcomes of myeloid blast phase CML. Journal of Hematology and Oncology, 2021, 14, 94.	6.9	19
79	Clonal dynamics and clinical implications of postremission clonal hematopoiesis in acute myeloid leukemia. Blood, 2021, 138, 1733-1739.	0.6	19
80	Novel Therapeutic Approaches in Blastic Plasmacytoid Dendritic Cell Neoplasm (BPDCN): Era of Targeted Therapy. Clinical Lymphoma, Myeloma and Leukemia, 2021, 21, 734-740.	0.2	23
81	Selective Inhibition of the Second Bromodomain of BET Family Proteins Results in Robust Antitumor Activity in Preclinical Models of Acute Myeloid Leukemia. Molecular Cancer Therapeutics, 2021, 20, 1809-1819.	1.9	17
82	Overexpression of CD200 is a stem cell-specific mechanism of immune evasion in AML. , 2021, 9, e002968.		21
83	Outcomes of <i>TP53</i> â€mutant acute myeloid leukemia with decitabine and venetoclax. Cancer, 2021, 127, 3772-3781.	2.0	80
84	Impact of <scp>Philadelphia</scp> chromosomeâ€like alterations on efficacy and safety of blinatumomab in adults with relapsed/refractory acute lymphoblastic leukemia: A post hoc analysis from the phase 3 <scp>TOWER</scp> study. American Journal of Hematology, 2021, 96, E379-E383.	2.0	12
85	DYRK1a mediates BAFF-induced noncanonical NF-κB activation to promote autoimmunity and B-cell leukemogenesis. Blood, 2021, 138, 2360-2371.	0.6	22
86	Final results of a phase 2 clinical trial of LCL161, an oral SMAC mimetic for patients with myelofibrosis. Blood Advances, 2021, 5, 3163-3173.	2.5	17
87	Venetoclax plus intensive chemotherapy with cladribine, idarubicin, and cytarabine in patients with newly diagnosed acute myeloid leukaemia or high-risk myelodysplastic syndrome: a cohort from a single-centre, single-arm, phase 2 trial. Lancet Haematology,the, 2021, 8, e552-e561.	2.2	81
88	The Combined Treatment With the FLT3-Inhibitor AC220 and the Complex I Inhibitor IACS-010759 Synergistically Depletes Wt- and FLT3-Mutated Acute Myeloid Leukemia Cells. Frontiers in Oncology, 2021, 11, 686765.	1.3	10
89	Development of <scp> <i>TP53</i> </scp> mutations over the course of therapy for acute myeloid leukemia. American Journal of Hematology, 2021, 96, 1420-1428.	2.0	10
90	Tenâ€day decitabine with venetoclax versus intensive chemotherapy in relapsed or refractory acute myeloid leukemia: A propensity scoreâ€matched analysis. Cancer, 2021, 127, 4213-4220.	2.0	24

#	Article	IF	CITATIONS
91	CD303 (BDCA-2) – a potential novel target for therapy in hematologic malignancies. Leukemia and Lymphoma, 2021, , 1-12.	0.6	6
92	Beyond BCL-2 Inhibition in Acute Myeloid Leukemia: Other Approaches to Leverage the Apoptotic Pathway. Clinical Lymphoma, Myeloma and Leukemia, 2021, 21, S3-S6.	0.2	3
93	Predictors of outcomes in adults with acute myeloid leukemia and KMT2A rearrangements. Blood Cancer Journal, 2021, 11, 162.	2.8	32
94	BCL-W expression associates with poor outcome in patients with peripheral T-cell lymphoma not otherwise specified. Blood Cancer Journal, 2021, 11, 153.	2.8	1
95	Outcomes of acute lymphoblastic leukemia with <i>KMT2A</i> (<i>MLL</i>) rearrangement: the MD Anderson experience. Blood Advances, 2021, 5, 5415-5419.	2.5	24
96	Prognostic impact of conventional cytogenetics in acute myeloid leukemia treated with venetoclax and decitabine. Leukemia and Lymphoma, 2021, , 1-5.	0.6	2
97	Exogenous mitochondrial transfer and endogenous mitochondrial fission facilitate AML resistance to OxPhos inhibition. Blood Advances, 2021, 5, 4233-4255.	2.5	36
98	Venetoclax Combined With FLAG-IDA Induction and Consolidation in Newly Diagnosed and Relapsed or Refractory Acute Myeloid Leukemia. Journal of Clinical Oncology, 2021, 39, 2768-2778.	0.8	173
99	Single-cell polyfunctional proteomics of CD4 cells from patients with AML predicts responses to anti–PD-1–based therapy. Blood Advances, 2021, 5, 4569-4574.	2.5	15
100	Single cell T cell landscape and T cell receptor repertoire profiling of AML in context of PD-1 blockade therapy. Nature Communications, 2021, 12, 6071.	5.8	44
101	2021 Update on MRD in acute myeloid leukemia: a consensus document from the European LeukemiaNet MRD Working Party. Blood, 2021, 138, 2753-2767.	0.6	305
102	Integrated Clinical Genotype-Phenotype Characteristics of Blastic Plasmacytoid Dendritic Cell Neoplasm. Cancers, 2021, 13, 5888.	1.7	15
103	Keeping up with venetoclax for leukemic malignancies: key findings, optimal regimens, and clinical considerations. Expert Review of Clinical Pharmacology, 2021, 14, 1497-1512.	1.3	3
104	FLT3 Inhibitors Upregulate CXCR4 and E-Selectin Ligands and CD44 <i>Via</i> ERK Suppression in AML Cells, and Blockade of CXCR4 and E-Selectin Signaling with GMI-1359 Overcomes AML Resistance to Quizartinib <i>in Vitro</i> and <i>In Vivo</i> . Blood, 2021, 138, 1171-1171.	0.6	2
105	Development of a BCL-xL and BCL-2 dual degrader with improved anti-leukemic activity,. Nature Communications, 2021, 12, 6896.	5.8	56
106	Concomitant targeting of BCL2 with venetoclax and MAPK signaling with cobimetinib in acute myeloid leukemia models. Haematologica, 2020, 105, 697-707.	1.7	78
107	Percutaneous coronary intervention and inâ€hospital outcomes in patients with leukemia: a nationwide analysis. Catheterization and Cardiovascular Interventions, 2020, 96, 53-63.	0.7	20
108	The early achievement of measurable residual disease negativity in the treatment of adults with Philadelphiaâ€negative Bâ€cell acute lymphoblastic leukemia is a strong predictor for survival. American Journal of Hematology, 2020, 95, 144-150.	2.0	25

#	Article	IF	CITATIONS
109	Clinical Experience With Venetoclax Combined With Chemotherapy for Relapsed or Refractory T-Cell Acute Lymphoblastic Leukemia. Clinical Lymphoma, Myeloma and Leukemia, 2020, 20, 212-218.	0.2	71
110	Clonal evolution of acute myeloid leukemia revealed by high-throughput single-cell genomics. Nature Communications, 2020, 11, 5327.	5.8	208
111	Outcomes with sequential FLT3-inhibitor-based therapies in patients with AML. Journal of Hematology and Oncology, 2020, 13, 132.	6.9	18
112	10-day decitabine with venetoclax for newly diagnosed intensive chemotherapy ineligible, and relapsed or refractory acute myeloid leukaemia: a single-centre, phase 2 trial. Lancet Haematology,the, 2020, 7, e724-e736.	2.2	201
113	An expert overview of emerging therapies for acute myeloid leukemia: novel small molecules targeting apoptosis, p53, transcriptional regulation and metabolism. Expert Opinion on Investigational Drugs, 2020, 29, 973-988.	1.9	6
114	Azacitidine and Venetoclax in Previously Untreated Acute Myeloid Leukemia. New England Journal of Medicine, 2020, 383, 617-629.	13.9	1,407
115	Phase 1 study of combinatorial sorafenib, <scp>Gâ€CSF</scp> , and plerixafor treatment in relapsed/refractory, <scp>FLT3â€ITD</scp> â€mutated acute myelogenous leukemia patients. American Journal of Hematology, 2020, 95, 1296-1303.	2.0	22
116	Hyper-CVAD regimen in combination with ofatumumab as frontline therapy for adults with Philadelphia chromosome-negative B-cell acute lymphoblastic leukaemia: a single-arm, phase 2 trial. Lancet Haematology,the, 2020, 7, e523-e533.	2.2	43
117	Outcome of patients with IDH1/2-mutated post–myeloproliferative neoplasm AML in the era of IDH inhibitors. Blood Advances, 2020, 4, 5336-5342.	2.5	37
118	Natural history of newly diagnosed myelodysplastic syndrome with isolated inv(3)/t(3;3). American Journal of Hematology, 2020, 95, E326-E329.	2.0	2
119	Harnessing Apoptosis in AML. Clinical Lymphoma, Myeloma and Leukemia, 2020, 20, S61-S64.	0.2	4
120	Approval of tagraxofusp-erzs for blastic plasmacytoid dendritic cell neoplasm. Blood Advances, 2020, 4, 4020-4027.	2.5	48
121	Genome-edited, donor-derived allogeneic anti-CD19 chimeric antigen receptor T cells in paediatric and adult B-cell acute lymphoblastic leukaemia: results of two phase 1 studies. Lancet, The, 2020, 396, 1885-1894.	6.3	206
122	Prognostic impact of complete remission with MRD negativity in patients with relapsed or refractory AML. Blood Advances, 2020, 4, 6117-6126.	2.5	29
123	Prognostic and therapeutic impacts of mutant <i>TP53</i> variant allelic frequency in newly diagnosed acute myeloid leukemia. Blood Advances, 2020, 4, 5681-5689.	2.5	105
124	Impact of <scp><i>CD33</i></scp> and <scp><i>ABCB1</i></scp> single nucleotide polymorphisms in patients with acute myeloid leukemia and advanced myeloid malignancies treated with decitabine plus gemtuzumab ozogamicin. American Journal of Hematology, 2020, 95, E225-E228.	2.0	9
125	Outcome of adults with relapsed/refractory Tâ€cell acute lymphoblastic leukemia or lymphoblastic lymphoma. American Journal of Hematology, 2020, 95, E245-E247.	2.0	16
126	Phase 2 study of hyper MAD with liposomal vincristine for patients with newly diagnosed acute lymphoblastic leukemia. American Journal of Hematology, 2020, 95, 734-739.	2.0	10

#	Article	IF	CITATIONS
127	MIRROS: a randomized, placebo-controlled, Phase III trial of cytarabine ± idasanutlin in relapsed or refractory acute myeloid leukemia. Future Oncology, 2020, 16, 807-815.	1.1	53
128	Fatty Acid Metabolism, Bone Marrow Adipocytes, and AML. Frontiers in Oncology, 2020, 10, 155.	1.3	45
129	Inhibition of Oxidative Phosphorylation Reverses Bone Marrow Hypoxia Visualized in Imageable Syngeneic B-ALL Mouse Model. Frontiers in Oncology, 2020, 10, 991.	1.3	11
130	MDM2 inhibition: an important step forward in cancer therapy. Leukemia, 2020, 34, 2858-2874.	3.3	207
131	Outcomes of acute myeloid leukemia with myelodysplasia related changes depend on diagnostic criteria and therapy. American Journal of Hematology, 2020, 95, 612-622.	2.0	51
132	Advances in the Treatment of Acute Myeloid Leukemia: New Drugs and New Challenges. Cancer Discovery, 2020, 10, 506-525.	7.7	212
133	Clinical value of event-free survival in acute myeloid leukemia. Blood Advances, 2020, 4, 1690-1699.	2.5	4
134	Is there an optimal conditioning for older patients with AML receiving allogeneic hematopoietic cell transplantation?. Blood, 2020, 135, 449-452.	0.6	39
135	Genomic context and TP53 allele frequency define clinical outcomes in TP53-mutated myelodysplastic syndromes. Blood Advances, 2020, 4, 482-495.	2.5	86
136	Outcomes of older patients with NPM1-mutated AML: current treatments and the promise of venetoclax-based regimens. Blood Advances, 2020, 4, 1311-1320.	2.5	106
137	Interim Analysis of the Phase 1b/2 Study of the BCL-2 Inhibitor Venetoclax in Combination with Standard Intensive AML Induction/Consolidation Therapy with FLAG-IDA in Patients with Newly Diagnosed or Relapsed/Refractory AML. Blood, 2020, 136, 18-20.	0.6	17
138	Results of Venetoclax and Azacitidine Combination in Chemotherapy Ineligible Untreated Patients with Acute Myeloid Leukemia with <i>IDH 1/2</i> Mutations. Blood, 2020, 136, 5-7.	0.6	28
139	Hyper-CVAD and Sequential Blinatumomab in Adults with Newly Diagnosed Philadelphia Chromosome-Negative B-Cell Acute Lymphoblastic Leukemia: Results from a Phase II Study. Blood, 2020, 136, 9-11.	0.6	13
140	Clinical Profile of IMGN632, a Novel CD123-Targeting Antibody-Drug Conjugate (ADC), in Patients with Relapsed/Refractory (R/R) Blastic Plasmacytoid Dendritic Cell Neoplasm (BPDCN). Blood, 2020, 136, 11-13.	0.6	16
141	Combined Ibrutinib and Venetoclax for First-Line Treatment for Patients with Chronic Lymphocytic Leukemia (CLL): Focus on MRD Results. Blood, 2020, 136, 42-43.	0.6	11
142	Venetoclax (Ven) added to intensive chemo with cladribine, idarubicin, and AraC (CLIA) achieves high rates of durable complete remission with low rates of measurable residual disease (MRD) in pts with newly diagnosed acute myeloid leukemia (AML) Journal of Clinical Oncology, 2020, 38, 7539-7539.	0.8	6
143	Bone marrow stromal cells induce an ALDH+ stem cell-like phenotype and enhance therapy resistance in AML through a TGF-β-p38-ALDH2 pathway. PLoS ONE, 2020, 15, e0242809.	1.1	19

#	Article	IF	CITATIONS
145	Title is missing!. , 2020, 15, e0242809.		Ο
146	Title is missing!. , 2020, 15, e0242809.		0
147	Title is missing!. , 2020, 15, e0242809.		0
148	Amino acid metabolism in hematologic malignancies and the era of targeted therapy. Blood, 2019, 134, 1014-1023.	0.6	124
149	Targeting PRMT1-mediated FLT3 methylation disrupts maintenance of MLL-rearranged acute lymphoblastic leukemia. Blood, 2019, 134, 1257-1268.	0.6	30
150	Neurotoxic events associated with BCR-ABL1 tyrosine kinase inhibitors: a case series. Leukemia and Lymphoma, 2019, 60, 3292-3295.	0.6	10
151	Philadelphia chromosomeâ€positive acute lymphoblastic leukemia at first relapse in the era of tyrosine kinase inhibitors. American Journal of Hematology, 2019, 94, 1388-1395.	2.0	26
152	Assessing Metabolic Intervention with a Glutaminase Inhibitor in Real-Time by Hyperpolarized Magnetic Resonance in Acute Myeloid Leukemia. Molecular Cancer Therapeutics, 2019, 18, 1937-1946.	1.9	19
153	Venetoclax-based therapies for acute myeloid leukemia. Best Practice and Research in Clinical Haematology, 2019, 32, 145-153.	0.7	113
154	Glutaminase Activity of <scp>L</scp> -Asparaginase Contributes to Durable Preclinical Activity against Acute Lymphoblastic Leukemia. Molecular Cancer Therapeutics, 2019, 18, 1587-1592.	1.9	46
155	Unrecognized fluid overload during induction therapy increases morbidity in patients with acute promyelocytic leukemia. Cancer, 2019, 125, 3219-3224.	2.0	14
156	Ibrutinib and Venetoclax for First-Line Treatment of CLL. New England Journal of Medicine, 2019, 380, 2095-2103.	13.9	388
157	Prognostic significance of baseline <i>FLT3</i> â€ITD mutant allele level in acute myeloid leukemia treated with intensive chemotherapy with/without sorafenib. American Journal of Hematology, 2019, 94, 984-991.	2.0	32
158	Proteomic Profiling of Signaling Networks Modulated by C-CSF/Plerixafor/Busulfan-Fludarabine Conditioning in Acute Myeloid Leukemia Patients in Remission or with Active Disease prior to Allogeneic Stem Cell Transplantation. Acta Haematologica, 2019, 142, 176-184.	0.7	2
159	PD1/PD-L1 Expression in Blastic Plasmacytoid Dendritic Cell Neoplasm. Cancers, 2019, 11, 695.	1.7	12
160	Tagraxofusp in Blastic Plasmacytoid Dendritic-Cell Neoplasm. New England Journal of Medicine, 2019, 380, 1628-1637.	13.9	274
161	Incidence of second malignancies in patients with chronic myeloid leukemia in the era of tyrosine kinase inhibitors. International Journal of Hematology, 2019, 109, 545-552.	0.7	25
162	NPM1mutant variant allele frequency correlates with leukemia burden but does not provide prognostic information inNPM1â€mutated acute myeloid leukemia. American Journal of Hematology, 2019, 94, E158-E160.	2.0	17

#	Article	IF	CITATIONS
163	AMP-activated protein kinase links acetyl-CoA homeostasis to BRD4 recruitment in acute myeloid leukemia. Blood, 2019, 134, 2183-2194.	0.6	25
164	NPM1 mutations define a specific subgroup of MDS and MDS/MPN patients with favorable outcomes with intensive chemotherapy. Blood Advances, 2019, 3, 922-933.	2.5	84
165	Venetoclax for AML: changing the treatment paradigm. Blood Advances, 2019, 3, 4326-4335.	2.5	119
166	A selective BCL-XL PROTAC degrader achieves safe and potent antitumor activity. Nature Medicine, 2019, 25, 1938-1947.	15.2	348
167	Features of non-activation dendritic state and immune deficiency in blastic plasmacytoid dendritic cell neoplasm (BPDCN). Blood Cancer Journal, 2019, 9, 99.	2.8	26
168	Dual Expression of TCF4 and CD123 Is Highly Sensitive and Specific For Blastic Plasmacytoid Dendritic Cell Neoplasm. American Journal of Surgical Pathology, 2019, 43, 1429-1437.	2.1	59
169	Refining statistics clarifies leukaemic stem cell genomics. British Journal of Haematology, 2019, 185, 1005-1007.	1.2	1
170	Treatment with a 5-day versus a 10-day schedule of decitabine in older patients with newly diagnosed acute myeloid leukaemia: a randomised phase 2 trial. Lancet Haematology,the, 2019, 6, e29-e37.	2.2	84
171	Efficacy, Safety, and Biomarkers of Response to Azacitidine and Nivolumab in Relapsed/Refractory Acute Myeloid Leukemia: A Nonrandomized, Open-Label, Phase II Study. Cancer Discovery, 2019, 9, 370-383.	7.7	380
172	Tyrosine kinase inhibitor discontinuation in patients with chronic myeloid leukemia: a single-institution experience. Journal of Hematology and Oncology, 2019, 12, 1.	6.9	257
173	Assessment of l-Asparaginase Pharmacodynamics in Mouse Models of Cancer. Metabolites, 2019, 9, 10.	1.3	11
174	Venetoclax combined with decitabine or azacitidine in treatment-naive, elderly patients with acute myeloid leukemia. Blood, 2019, 133, 7-17.	0.6	1,254
175	CD123 expression patterns and selective targeting with a CD123-targeted antibody-drug conjugate (IMGN632) in acute lymphoblastic leukemia. Haematologica, 2019, 104, 749-755.	1.7	50
176	Validation of the 2017 European LeukemiaNet classification for acute myeloid leukemia with <i>NPM1 </i> and <i>FLT3</i> â€internal tandem duplication genotypes. Cancer, 2019, 125, 1091-1100.	2.0	50
177	The distribution of Tâ€cell subsets and the expression of immune checkpoint receptors and ligands in patients with newly diagnosed and relapsed acute myeloid leukemia. Cancer, 2019, 125, 1470-1481.	2.0	229
178	BETP degradation simultaneously targets acute myelogenous leukemic stem cells and the microenvironment. Journal of Clinical Investigation, 2019, 129, 1878-1894.	3.9	51
179	Venetoclax Combined with Cladribine + Low Dose AraC (LDAC) Alternating with 5-Azacytidine Produces High Rates of Minimal Residual Disease (MRD) Negative Complete Remissions (CR) in Older Patients with Newly Diagnosed Acute Myeloid Leukemia (AML). Blood, 2019, 134, 2647-2647.	0.6	11
180	Updated Results from the Venetoclax (Ven) in Combination with Idasanutlin (Idasa) Arm of a Phase 1b Trial in Elderly Patients (Pts) with Relapsed or Refractory (R/R) AML Ineligible for Cytotoxic Chemotherapy. Blood, 2019, 134, 229-229.	0.6	30

#	Article	IF	CITATIONS
181	Updated Results of a Phase II Study of Reduced-Intensity Chemotherapy with Mini-Hyper-CVD in Combination with Inotuzumab Ozogamicin, with or without Blinatumomab, in Older Adults with Newly Diagnosed Philadelphia Chromosome-Negative Acute Lymphoblastic Leukemia. Blood, 2019, 134, 823-823.	0.6	12
182	Acceleration of AML Progression By Cigarette Smoke Exposure or Condensate Exposure and Associated DNA Methylation Alterations. Blood, 2019, 134, 2554-2554.	0.6	1
183	Ten-Day Decitabine with Venetoclax (DEC10-VEN) in Acute Myeloid Leukemia: Updated Results of a Phase II Trial. Blood, 2019, 134, 2637-2637.	0.6	15
184	A Phase 1b/2 Study of the CD123-Targeting Antibody-Drug Conjugate IMGN632 As Monotherapy or in Combination with Venetoclax and/or Azacitidine for Patients with CD123-Positive Acute Myeloid Leukemia. Blood, 2019, 134, 2601-2601.	0.6	7
185	Clinical Profile of IMGN632, a Novel CD123-Targeting Antibody-Drug Conjugate (ADC), in Patients with Relapsed/Refractory (R/R) Acute Myeloid Leukemia (AML) or Blastic Plasmacytoid Dendritic Cell Neoplasm (BPDCN). Blood, 2019, 134, 734-734.	0.6	40
186	A Multicenter Phase I Study Combining Venetoclax with Mini-Hyper-CVD in Older Adults with Untreated and Relapsed/Refractory Acute Lymphoblastic Leukemia. Blood, 2019, 134, 3867-3867.	0.6	30
187	Blastic Plasmacytoid Dendritic Cell Neoplasm (BPDCN) Commonly Presents in the Setting of Prior or Concomitant Hematologic Malignancies (PCHM): Patient Characteristics and Outcomes in the Rapidly Evolving Modern Targeted Therapy Era. Blood, 2019, 134, 2723-2723.	0.6	14
188	Activity of venetoclax-based therapy in TP53-mutated acute myeloid leukemia Journal of Clinical Oncology, 2019, 37, 7034-7034.	0.8	8
189	Interim results from a phase Ib/II clinical study of the glutaminase inhibitor telaglenastat (CB-839) in combination with azacitidine in patients with advanced myelodysplastic syndrome (MDS) Journal of Clinical Oncology, 2019, 37, 7037-7037.	0.8	6
190	Disruption of Wnt/β-Catenin Exerts Antileukemia Activity and Synergizes with FLT3 Inhibition in <i>FLT3</i> -Mutant Acute Myeloid Leukemia. Clinical Cancer Research, 2018, 24, 2417-2429.	3.2	65
191	Inotuzumab ozogamicin in combination with low-intensity chemotherapy for older patients with Philadelphia chromosome-negative acute lymphoblastic leukaemia: a single-arm, phase 2 study. Lancet Oncology, The, 2018, 19, 240-248.	5.1	192
192	Outcomes with lower intensity therapy in <i>TP53</i> -mutated acute myeloid leukemia. Leukemia and Lymphoma, 2018, 59, 2238-2241.	0.6	20
193	Safety and preliminary efficacy of venetoclax with decitabine or azacitidine in elderly patients with previously untreated acute myeloid leukaemia: a non-randomised, open-label, phase 1b study. Lancet Oncology, The, 2018, 19, 216-228.	5.1	551
194	Distinct protein signatures of acute myeloid leukemia bone marrow-derived stromal cells are prognostic for patient survival. Haematologica, 2018, 103, 810-821.	1.7	33
195	ORY-1001: Overcoming the Differentiation Block in AML. Cancer Cell, 2018, 33, 342-343.	7.7	20
196	Hyper VAD plus nelarabine in newly diagnosed adult Tâ€cell acute lymphoblastic leukemia and Tâ€lymphoblastic lymphoma. American Journal of Hematology, 2018, 93, 91-99.	2.0	74
197	Clinical experience with the <scp>BCL</scp> 2â€inhibitor venetoclax in combination therapy for relapsed and refractory acute myeloid leukemia and related myeloid malignancies. American Journal of Hematology, 2018, 93, 401-407.	2.0	336
198	Clearance of Somatic Mutations at Remission and the Risk of Relapse in Acute Myeloid Leukemia. Journal of Clinical Oncology, 2018, 36, 1788-1797.	0.8	156

#	Article	IF	CITATIONS
199	Inhibition of FAO in AML co-cultured with BM adipocytes: mechanisms of survival and chemosensitization to cytarabine. Scientific Reports, 2018, 8, 16837.	1.6	36
200	Combination of hyper-CVAD with ponatinib as first-line therapy for patients with Philadelphia chromosome-positive acute lymphoblastic leukaemia: long-term follow-up of a single-centre, phase 2 study. Lancet Haematology,the, 2018, 5, e618-e627.	2.2	190
201	Chemoimmunotherapy with inotuzumab ozogamicin combined with miniâ€hyper VD, with or without blinatumomab, is highly effective in patients with Philadelphia chromosome–negative acute lymphoblastic leukemia in first salvage. Cancer, 2018, 124, 4044-4055.	2.0	88
202	Targeting dihydroorotate dehydrogenase in acute myeloid leukemia. Haematologica, 2018, 103, 1415-1417.	1.7	5
203	Genetic biomarkers of sensitivity and resistance to venetoclax monotherapy in patients with relapsed acute myeloid leukemia. American Journal of Hematology, 2018, 93, E202.	2.0	116
204	Integrative genomic analysis of adult mixed phenotype acute leukemia delineates lineage associated molecular subtypes. Nature Communications, 2018, 9, 2670.	5.8	79
205	P53 protein overexpression in de novo acute myeloid leukemia patients with normal diploid karyotype correlates with <i>FLT3</i> internal tandem duplication and worse relapseâ€free survival. American Journal of Hematology, 2018, 93, 1376-1383.	2.0	17
206	Cladribine and low-dose cytarabine alternating with decitabine as front-line therapy for elderly patients with acute myeloid leukaemia: a phase 2 single-arm trial. Lancet Haematology,the, 2018, 5, e411-e421.	2.2	66
207	An inhibitor of oxidative phosphorylation exploits cancer vulnerability. Nature Medicine, 2018, 24, 1036-1046.	15.2	622
208	Abstract 1655: Discovery and development of IACS-010759, a novel inhibitor of Complex I currently in phase I studies to exploit oxidative phosphorylation dependency in acute myeloid leukemia and solid tumors. , 2018, , .		4
209	Pattern of Immune-Mediated Toxicities in Patients with Myelodysplastic Syndrome (MDS) Treated with Nivolumab and Ipilimumab. Blood, 2018, 132, 4367-4367.	0.6	2
210	Cell-Type Specific Mechanisms of Hematopoietic Stem Cell (HSC) Expansion Underpin Progressive Disease in Myelodysplastic Syndromes (MDS) and Provide a Rationale for Targeted Therapies. Blood, 2018, 132, 1798-1798.	0.6	4
211	Mitochondrial Transfer Confers Microenvironment-Mediated Resistance to Oxphos Inhibition in AML. Blood, 2018, 132, 430-430.	0.6	0
212	Disruption of NOTCH1-MYC-CD44 Axis Targets Leukemia Initiating Cells (LIC) in T-ALL. Blood, 2018, 132, 890-890.	0.6	0
213	Antileukemia Efficacy and Mechanisms of Action of SL-101, a Novel Anti-CD123 Antibody Conjugate, in Acute Myeloid Leukemia. Clinical Cancer Research, 2017, 23, 3385-3395.	3.2	41
214	Molecular Pathways: Hypoxia-Activated Prodrugs in Cancer Therapy. Clinical Cancer Research, 2017, 23, 2382-2390.	3.2	101
215	Pathways and mechanisms of venetoclax resistance. Leukemia and Lymphoma, 2017, 58, 2026-2039.	0.6	203
216	Bone Marrow Adipocytes Facilitate Fatty Acid Oxidation Activating AMPK and a Transcriptional Network Supporting Survival of Acute Monocytic Leukemia Cells. Cancer Research, 2017, 77, 1453-1464.	0.4	123

#	Article	IF	CITATIONS
217	PTEN status is a crucial determinant of the functional outcome of combined MEK and mTOR inhibition in cancer. Scientific Reports, 2017, 7, 43013.	1.6	44
218	Management of Venetoclax-Posaconazole Interaction in Acute Myeloid Leukemia Patients: Evaluation of Dose Adjustments. Clinical Therapeutics, 2017, 39, 359-367.	1.1	152
219	High Frequency and Poor Outcome of Philadelphia Chromosome–Like Acute Lymphoblastic Leukemia in Adults. Journal of Clinical Oncology, 2017, 35, 394-401.	0.8	326
220	CRLF2-Positive B-Cell Acute Lymphoblastic Leukemia in Adult Patients. American Journal of Clinical Pathology, 2017, 147, 357-363.	0.4	51
221	Inhibition of mTOR kinase as a therapeutic target for acute myeloid leukemia. Expert Opinion on Therapeutic Targets, 2017, 21, 705-714.	1.5	25
222	Natural history of chronic myelomonocytic leukemia treated with hypomethylating agents. American Journal of Hematology, 2017, 92, 599-606.	2.0	38
223	Ph-like acute lymphoblastic leukemia: a high-risk subtype in adults. Blood, 2017, 129, 572-581.	0.6	285
224	Poor outcomes associated with +der(22)t(9;22) and â^'9/9p in patients with Philadelphia chromosomeâ€positive acute lymphoblastic leukemia receiving chemotherapy plus a tyrosine kinase inhibitor. American Journal of Hematology, 2017, 92, 238-243.	2.0	41
225	Long-term outcome of acute promyelocytic leukemia treated with all-trans-retinoic acid, arsenic trioxide, and gemtuzumab. Blood, 2017, 129, 1275-1283.	0.6	214
226	Blastic Plasmacytoid Dendritic Cell Neoplasm Is Dependent on BCL2 and Sensitive to Venetoclax. Cancer Discovery, 2017, 7, 156-164.	7.7	164
227	Safety and Efficacy of Blinatumomab in Combination With a Tyrosine Kinase Inhibitor for the Treatment of Relapsed Philadelphia Chromosome-positive Leukemia. Clinical Lymphoma, Myeloma and Leukemia, 2017, 17, 897-901.	0.2	127
228	Co-occurrence of CRLF2-rearranged and Ph+ acute lymphoblastic leukemia: a report of four patients. Haematologica, 2017, 102, e514-e517.	1.7	13
229	Single-Cell Mass Cytometry of Acute Myeloid Leukemia and Leukemia Stem/Progenitor Cells. Methods in Molecular Biology, 2017, 1633, 75-86.	0.4	26
230	A randomized phase 2 study of idarubicin and cytarabine with clofarabine or fludarabine in patients with newly diagnosed acute myeloid leukemia. Cancer, 2017, 123, 4430-4439.	2.0	37
231	Prognostic factors and survival outcomes in patients with chronic myeloid leukemia in blast phase in the tyrosine kinase inhibitor era: Cohort study of 477 patients. Cancer, 2017, 123, 4391-4402.	2.0	114
232	T-PLL: another check on the venetoclax list?. Blood, 2017, 130, 2447-2448.	0.6	0
233	Synthetic Lethality of Combined Bcl-2 Inhibition and p53 Activation in AML: Mechanisms and Superior Antileukemic Efficacy. Cancer Cell, 2017, 32, 748-760.e6.	7.7	206
234	Clinical characteristics and outcomes of previously untreated patients with adult onset Tâ€acute lymphoblastic leukemia and Tâ€lymphoblastic lymphoma with hyper VAD based regimens. American Journal of Hematology, 2017, 92, E595-E597.	2.0	8

#	Article	IF	CITATIONS
235	High-throughput profiling of signaling networks identifies mechanism-based combination therapy to eliminate microenvironmental resistance in acute myeloid leukemia. Haematologica, 2017, 102, 1537-1548.	1.7	14
236	Differential impact of minimal residual disease negativity according to the salvage status in patients with relapsed/refractory <scp>B</scp> â€cell acute lymphoblastic leukemia. Cancer, 2017, 123, 294-302.	2.0	70
237	Prognostic impact of pretreatment cytogenetics in adult <scp>P</scp> hiladelphia chromosome–negative acute lymphoblastic leukemia in the era of minimal residual disease. Cancer, 2017, 123, 459-467.	2.0	49
238	Persistence of minimal residual disease assessed by multiparameter flow cytometry is highly prognostic in younger patients with acute myeloid leukemia. Cancer, 2017, 123, 426-435.	2.0	63
239	Treated secondary acute myeloid leukemia: a distinct high-risk subset of AML with adverse prognosis. Blood Advances, 2017, 1, 1312-1323.	2.5	83
240	The PI3Kδ Inhibitor Idelalisib Inhibits Homing in an in Vitro and in Vivo Model of B ALL. Cancers, 2017, 9, 121.	1.7	14
241	Clinical Outcomes and Co-Occurring Mutations in Patients with RUNX1-Mutated Acute Myeloid Leukemia. International Journal of Molecular Sciences, 2017, 18, 1618.	1.8	37
242	An Unsuspected Finding of t(9;22): A Rare Case of Philadelphia Chromosome-Positive B-Lymphoblastic Lymphoma. Case Reports in Hematology, 2017, 2017, 1-4.	0.3	11
243	Leukemia Stem Cells Microenvironment. Advances in Experimental Medicine and Biology, 2017, 1041, 19-32.	0.8	18
244	The Combination of Quizartinib with Azacitidine or Low Dose Cytarabine Is Highly Active in Patients (Pts) with FLT3-ITD Mutated Myeloid Leukemias: Interim Report of a Phase I/II Trial. Blood, 2017, 130, 723-723.	0.6	35
245	Targeting mantle cell lymphoma metabolism and survival through simultaneous blockade of mTOR and nuclear transporter exportin-1. Oncotarget, 2017, 8, 34552-34564.	0.8	9
246	Tumor <i>Trp53</i> status and genotype affect the bone marrow microenvironment in acute myeloid leukemia. Oncotarget, 2017, 8, 83354-83369.	0.8	7
247	Targeting the CXCL12/CXCR4 axis in acute myeloid leukemia: from bench to bedside. Korean Journal of Internal Medicine, 2017, 32, 248-257.	0.7	74
248	Inhibiting glutaminase in acute myeloid leukemia: metabolic dependency of selected AML subtypes. Oncotarget, 2016, 7, 79722-79735.	0.8	133
249	Phase I study of evofosfamide, an investigational hypoxiaâ€activated prodrug, in patients with advanced leukemia. American Journal of Hematology, 2016, 91, 800-805.	2.0	31
250	Early T-cell precursor acute lymphoblastic leukemia/lymphoma (ETP-ALL/LBL) in adolescents and adults: a high-risk subtype. Blood, 2016, 127, 1863-1869.	0.6	253
251	Efficacy and Biological Correlates of Response in a Phase II Study of Venetoclax Monotherapy in Patients with Acute Myelogenous Leukemia. Cancer Discovery, 2016, 6, 1106-1117.	7.7	799
252	Hyper VAD plus ponatinib versus hyper VAD plus dasatinib as frontline therapy for patients with Philadelphia chromosomeâ€positive acute lymphoblastic leukemia: A propensity score analysis. Cancer, 2016, 122, 3650-3656.	2.0	156

#	Article	IF	CITATIONS
253	<i>TP53</i> mutations in newly diagnosed acute myeloid leukemia: Clinicomolecular characteristics, response to therapy, and outcomes. Cancer, 2016, 122, 3484-3491.	2.0	200
254	Combined targeting of BCL-2 and BCR-ABL tyrosine kinase eradicates chronic myeloid leukemia stem cells. Science Translational Medicine, 2016, 8, 355ra117.	5.8	130
255	Clofarabine Plus Low-Dose Cytarabine Is as Effective as and Less Toxic Than Intensive Chemotherapy in Elderly AML Patients. Clinical Lymphoma, Myeloma and Leukemia, 2016, 16, 163-168.e2.	0.2	18
256	Hypoxia-Activated Prodrug TH-302 Targets Hypoxic Bone Marrow Niches in Preclinical Leukemia Models. Clinical Cancer Research, 2016, 22, 1687-1698.	3.2	66
257	ATF4 induction through an atypical integrated stress response to ONC201 triggers p53-independent apoptosis in hematological malignancies. Science Signaling, 2016, 9, ra17.	1.6	147
258	The Dual MEK/FLT3 Inhibitor E6201 Exerts Cytotoxic Activity against Acute Myeloid Leukemia Cells Harboring Resistance-Conferring FLT3 Mutations. Cancer Research, 2016, 76, 1528-1537.	0.4	45
259	mTOR Kinase Inhibitors Enhance Efficacy of TKIs in Preclinical Models of Ph-like B-ALL. Blood, 2016, 128, 2763-2763.	0.6	5
260	AMG925, a Dual FLT3-CDK4/6 Inhibitor, Disrupts Survival Signaling and Triggers Apoptosis in AML Progenitor/Stem Cells. Blood, 2016, 128, 3938-3938.	0.6	1
261	MLN0128, a novel mTOR kinase inhibitor, disrupts survival signaling and triggers apoptosis in AML and AML stem/ progenitor cells. Oncotarget, 2016, 7, 55083-55097.	0.8	31
262	Biguanides sensitize leukemia cells to ABT-737-induced apoptosis by inhibiting mitochondrial electron transport. Oncotarget, 2016, 7, 51435-51449.	0.8	33
263	Novel Fatty Acid Oxidation Inhibitor Avocatinb Induces AMPK-Dependent Apoptosis of AML Cells Co-Cultured with BM-Adipocytes. Blood, 2016, 128, 3947-3947.	0.6	0
264	Antileukemia activity of the novel peptidic CXCR4 antagonist LY2510924 as monotherapy and in combination with chemotherapy. Blood, 2015, 126, 222-232.	0.6	95
265	Improvement in clinical outcome of <i>FLT3</i> ITD mutated acute myeloid leukemia patients over the last one and a half decade. American Journal of Hematology, 2015, 90, 1065-1070.	2.0	17
266	Characteristics, clinical outcome, and prognostic significance of <scp>IDH</scp> mutations in <scp>AML</scp> . American Journal of Hematology, 2015, 90, 732-736.	2.0	242
267	Bone marrow necrosis in acute leukemia: Clinical characteristic and outcome. American Journal of Hematology, 2015, 90, 769-773.	2.0	27
268	Mitochondrial Profiling of Acute Myeloid Leukemia in the Assessment of Response to Apoptosis Modulating Drugs. PLoS ONE, 2015, 10, e0138377.	1.1	21
269	MDM2 Inhibitor, Nutlin 3a, Induces p53 Dependent Autophagy in Acute Leukemia by AMP Kinase Activation. PLoS ONE, 2015, 10, e0139254.	1.1	23
270	Leukemia cell mobilization with G-CSF plus plerixafor during busulfan–fludarabine conditioning for allogeneic stem cell transplantation. Bone Marrow Transplantation, 2015, 50, 939-946.	1.3	32

#	Article	IF	CITATIONS
271	Phase I/II study of the hypoxia-activated prodrug PR104 in refractory/relapsed acute myeloid leukemia and acute lymphoblastic leukemia. Haematologica, 2015, 100, 927-934.	1.7	93
272	MLL-Rearranged Acute Lymphoblastic Leukemias Activate BCL-2 through H3K79 Methylation and Are Sensitive to the BCL-2-Specific Antagonist ABT-199. Cell Reports, 2015, 13, 2715-2727.	2.9	118
273	Singleâ€cell mass cytometry reveals intracellular survival/proliferative signaling in FLT3â€ITDâ€mutated AML stem/progenitor cells. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2015, 87, 346-356.	1.1	83
274	Final report of a phase II study of imatinib mesylate with hyper-CVAD for the front-line treatment of adult patients with Philadelphia chromosome-positive acute lymphoblastic leukemia. Haematologica, 2015, 100, 653-661.	1.7	191
275	Relative survival in patients with chronic-phase chronic myeloid leukaemia in the tyrosine-kinase inhibitor era: analysis of patient data from six prospective clinical trials. Lancet Haematology,the, 2015, 2, e186-e193.	2.2	227
276	Role of Microenvironment in Resistance to Therapy in AML. Current Hematologic Malignancy Reports, 2015, 10, 96-103.	1.2	83
277	Final results of a phase 2 trial of clofarabine and lowâ€dose cytarabine alternating with decitabine in older patients with newly diagnosed acute myeloid leukemia. Cancer, 2015, 121, 2375-2382.	2.0	40
278	Combination of hyper-CVAD with ponatinib as first-line therapy for patients with Philadelphia chromosome-positive acute lymphoblastic leukaemia: a single-centre, phase 2 study. Lancet Oncology, The, 2015, 16, 1547-1555.	5.1	245
279	Efficacy and Safety of Eltrombopag for Treatment of Patients with Myelodysplastic Syndromes after Hypomethylating-Agent Failure: A Phase 2 Clinical Trial. Blood, 2015, 126, 1691-1691.	0.6	2
280	Phase II Study of Cladribine, Idarubicin, and Cytarabine (araC) in Patients with Acute Myeloid Leukemia (AML). Blood, 2015, 126, 2541-2541.	0.6	7
281	Phase 1 Study of CB-839, a First-in-Class, Orally Administered Small Molecule Inhibitor of Glutaminase in Patients with Relapsed/Refractory Leukemia. Blood, 2015, 126, 2566-2566.	0.6	31
282	BCL-2 Inhibition By ABT-199 (Venetoclax/GDC-0199) and p53 Activation By RG7388 (Idasanutlin) Reciprocally Overcome Leukemia Apoptosis Resistance to Either Strategy Alone: Efficacy and Mechanisms. Blood, 2015, 126, 673-673.	0.6	4
283	Synergistic effects of p53 activation via MDM2 inhibition in combination with inhibition of Bcl-2 or Bcr-Abl in CD34+ proliferating and quiescent chronic myeloid leukemia blast crisis cells. Oncotarget, 2015, 6, 30487-30499.	0.8	39
284	The novel combination of dual mTOR inhibitor AZD2014 and pan-PIM inhibitor AZD1208 inhibits growth in acute myeloid leukemia via HSF pathway suppression. Oncotarget, 2015, 6, 37930-37947.	0.8	32
285	Outcome of Patients with T-Cell ALL Post Frontline Therapy Failure. Blood, 2015, 126, 4873-4873.	0.6	Ο
286	Acute Myeloid Leukemia (AML) Cells Alter the Bone Marrow Microenvironment By Inducing Osteogenic and Suppressing Adipogenic Differentiation of MSCs through BMP-RUNX2-CTGF Mediated Mechanisms. Blood, 2015, 126, 2403-2403.	0.6	0
287	<scp>SL</scp> â€401 and <scp>SL</scp> â€501, targeted therapeutics directed at the interleukinâ€3 receptor, inhibit the growth of leukaemic cells and stem cells in advanced phase chronic myeloid leukaemia. British Journal of Haematology, 2014, 166, 862-874.	1.2	37
288	Preclinical and Early Clinical Evaluation of the Oral AKT Inhibitor, MK-2206, for the Treatment of Acute Myelogenous Leukemia. Clinical Cancer Research, 2014, 20, 2226-2235.	3.2	71

#	Article	IF	CITATIONS
289	A novel fluorometric assay for aldo-keto reductase 1C3 predicts metabolic activation of the nitrogen mustard prodrug PR-104A in human leukaemia cells. Biochemical Pharmacology, 2014, 88, 36-45.	2.0	32
290	Targeting connective tissue growth factor (CTGF) in acute lymphoblastic leukemia preclinical models: anti-CTGF monoclonal antibody attenuates leukemia growth. Annals of Hematology, 2014, 93, 485-492.	0.8	32
291	BCR-ABL1 Compound Mutations Combining Key Kinase Domain Positions Confer Clinical Resistance to Ponatinib in Ph Chromosome-Positive Leukemia. Cancer Cell, 2014, 26, 428-442.	7.7	292
292	Augmented Berlinâ€Frankfurtâ€Münster therapy in adolescents and young adults (AYAs) with acute lymphoblastic leukemia (ALL). Cancer, 2014, 120, 3660-3668.	2.0	91
293	Targetable Kinase-Activating Lesions in Ph-like Acute Lymphoblastic Leukemia. New England Journal of Medicine, 2014, 371, 1005-1015.	13.9	1,161
294	Reversal of Acquired Drug Resistance in <i>FLT3</i> -Mutated Acute Myeloid Leukemia Cells via Distinct Drug Combination Strategies. Clinical Cancer Research, 2014, 20, 2363-2374.	3.2	45
295	Evaluation of Apoptosis Induction by Concomitant Inhibition of MEK, mTOR, and Bcl-2 in Human Acute Myelogenous Leukemia Cells. Molecular Cancer Therapeutics, 2014, 13, 1848-1859.	1.9	32
296	Advances in understanding the leukaemia microenvironment. British Journal of Haematology, 2014, 164, 767-778.	1.2	120
297	Case series of patients with acute myeloid leukemia receiving hypomethylation therapy and retrospectively found to have <i>IDH1</i> or <i>IDH2</i> mutations. Leukemia and Lymphoma, 2014, 55, 1431-1434.	0.6	4
298	Selective BCL-2 Inhibition by ABT-199 Causes On-Target Cell Death in Acute Myeloid Leukemia. Cancer Discovery, 2014, 4, 362-375.	7.7	561
299	The protein phosphatase 2A regulatory subunit B55α is a modulator of signaling and microRNA expression in acute myeloid leukemia cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 1969-1977.	1.9	32
300	Activity of SL-401, a targeted therapy directed to interleukin-3 receptor, in blastic plasmacytoid dendritic cell neoplasm patients. Blood, 2014, 124, 385-392.	0.6	195
301	Pro-Survival Effects of TGF-β1 Are Associated with Molecular Signaling Changes of ERK, FLI-1, and CD44 in AML Cells. Blood, 2014, 124, 2337-2337.	0.6	6
302	Clofarabine, idarubicin, and cytarabine (CIA) as frontline therapy for patients â‰ ê 0 years with newly diagnosed acute myeloid leukemia. American Journal of Hematology, 2013, 88, 961-966.	2.0	46
303	PI3K inhibitor GDC-0941 enhances apoptotic effects of BH-3 mimetic ABT-737 in AML cells in the hypoxic bone marrow microenvironment. Journal of Molecular Medicine, 2013, 91, 1383-1397.	1.7	12
304	Targeting hypoxia in the leukemia microenvironment. International Journal of Hematologic Oncology, 2013, 2, 279-288.	0.7	45
305	The Bone Marrow Microenvironment as Niche Retreats for Hematopoietic and Leukemic Stem Cells. Advances in Hematology, 2013, 2013, 1-8.	0.6	74
306	Phase 2 study of azacytidine plus sorafenib in patients with acute myeloid leukemia and FLT-3 internal tandem duplication mutation. Blood, 2013, 121, 4655-4662.	0.6	355

#	Article	IF	CITATIONS
307	Asparaginase unveils glutamine-addicted AML. Blood, 2013, 122, 3398-3400.	0.6	20
308	CXCR4 downregulation of let-7a drives chemoresistance in acute myeloid leukemia. Journal of Clinical Investigation, 2013, 123, 2395-2407.	3.9	171
309	TGF-β-Neutralizing Antibody 1D11 Enhances Cytarabine-Induced Apoptosis in AML Cells in the Bone Marrow Microenvironment. PLoS ONE, 2013, 8, e62785.	1.1	69
310	Effects of PPAR <i>\hat{I}^3</i> Ligands on Leukemia. PPAR Research, 2012, 2012, 1-8.	1.1	13
311	Concomitant inhibition of DNA methyltransferase and BCL-2 protein function synergistically induce mitochondrial apoptosis in acute myelogenous leukemia cells. Annals of Hematology, 2012, 91, 1861-1870.	0.8	129
312	Twice-Daily Fludarabine and Cytarabine Combination With or Without Gentuzumab Ozogamicin is Effective in Patients With Relapsed/Refractory Acute Myeloid Leukemia, High-Risk Myelodysplastic Syndrome, and Blast- Phase Chronic Myeloid Leukemia. Clinical Lymphoma, Myeloma and Leukemia, 2012, 12, 244-251.	0.2	34
313	Regulation of HIF-1α signaling and chemoresistance in acute lymphocytic leukemia under hypoxic conditions of the bone marrow microenvironment. Cancer Biology and Therapy, 2012, 13, 858-870.	1.5	119
314	TGF-β1 Supports Leukemia Cell Survival Via Negative Regulation of FLI-1 Transcription Factor, ERK Inactivation and MMP-1 Secretion. Blood, 2012, 120, 3543-3543.	0.6	3
315	Final Report of a Phase I/II Study of Hyper-CVAD Plus RAD001 (Everolimus) in Patients with Relapsed/Refractory Acute Lymphoblastic Leukemia. Blood, 2012, 120, 3567-3567.	0.6	1
316	A Plant Triterpenoid Avicin D Stimulates Adipocytic Differentiation of Bone Marrow Stromal Cells and Promotes Their Pro-Survival Effects On Acute Monoblastic Leukemia Cells. Blood, 2012, 120, 4315-4315.	0.6	0
317	The Hsa-Let-7a miRNA Enhances Ara-C Induced Apoptosis in Human Acute Myeloid Leukemia Cells. Blood, 2012, 120, 1286-1286.	0.6	0
318	Pronounced Hypoxia in Models of Murine and Human Leukemia: High Efficacy of Hypoxia-Activated Prodrug PR-104. PLoS ONE, 2011, 6, e23108.	1.1	108
319	Leukemia Stem Cells and Microenvironment: Biology and Therapeutic Targeting. Journal of Clinical Oncology, 2011, 29, 591-599.	0.8	362
320	Phase I study of sorafenib in patients with refractory or relapsed acute leukemias. Haematologica, 2011, 96, 62-68.	1.7	185
321	Pre Clinical mTOR-Inhibition of Acute Lymphoblastic Leukemia Cells Synergizes with Pro-Apoptotic Target Therapy Through Mcl-1 Down-Regulation,. Blood, 2011, 118, 3581-3581.	0.6	0
322	Role of Connective Tissue Growth Factor (CTGF) in Survival and Chemosensitivity of Acute Lymphoblastic Leukemia. Blood, 2011, 118, 2593-2593.	0.6	0
323	The Anti-Proliferative Effects of Hsp90 Inhibitor Tricyclic Coumarin GUT-70 and Geldanamycin Analog 17-DMAG in AML Cells in Hypoxia. Blood, 2011, 118, 2480-2480.	0.6	0
324	Human Extramedullary Bone and Bone Marrow in Mice: First In Vivo Model of a Genetically Controlled Hematopoietic Environment. Blood, 2011, 118, 1323-1323.	0.6	5

#	Article	IF	CITATIONS
325	Pharmacologic inhibition of fatty acid oxidation sensitizes human leukemia cells to apoptosis induction. Journal of Clinical Investigation, 2010, 120, 142-156.	3.9	572
326	Blockade of Mitogen-Activated Protein Kinase/Extracellular Signal-Regulated Kinase Kinase and Murine Double Minute Synergistically Induces Apoptosis in Acute Myeloid Leukemia via BH3-Only Proteins Puma and Bim. Cancer Research, 2010, 70, 2424-2434.	0.4	68
327	Phase I/II Study of Combination Therapy With Sorafenib, Idarubicin, and Cytarabine in Younger Patients With Acute Myeloid Leukemia. Journal of Clinical Oncology, 2010, 28, 1856-1862.	0.8	347
328	MDM2 Inhibitor Nutlin-3a Triggers Autophagic Cell Death In Addition to Apoptosis In Leukemia Cell Lines with Wild-Type p53. Blood, 2010, 116, 3300-3300.	0.6	1
329	Therapeutic targeting of microenvironmental interactions in leukemia: Mechanisms and approaches. Drug Resistance Updates, 2009, 12, 103-113.	6.5	156
330	Targeting the leukemia microenvironment by CXCR4 inhibition overcomes resistance to kinase inhibitors and chemotherapy in AML. Blood, 2009, 113, 6215-6224.	0.6	467
331	Mechanisms of Antileukemic Activity of the Novel Bcl-2 Homology Domain-3 Mimetic GX15-070 (Obatoclax). Cancer Research, 2008, 68, 3413-3420.	0.4	254
332	Mutant FLT3: A Direct Target of Sorafenib in Acute Myelogenous Leukemia. Journal of the National Cancer Institute, 2008, 100, 184-198.	3.0	334
333	Mitogen-Activated Protein Kinase Kinase Inhibition Enhances Nuclear Proapoptotic Function of p53 in Acute Myelogenous Leukemia Cells. Cancer Research, 2007, 67, 3210-3219.	0.4	50
334	Targeting the Leukemia Microenvironment. Current Drug Targets, 2007, 8, 685-701.	1.0	51
335	Synergistic Induction of Apoptosis by Simultaneous Disruption of the Bcl-2 and mTOR/Akt Pathways in Acute Myeloid Leukemia Blood, 2007, 110, 1588-1588.	0.6	0
336	The Hypoxic Microenvironment in Acute Myelogenous Leukemia: Critical Role of CXCR4 in the Induction of HIF-1α Blood, 2007, 110, 1819-1819.	0.6	0
337	MEK Inhibitor AZD6244 Induces Cell Growth Arrest and Synergizes Nutlin-3a-Mediated Cell Death by Upregulating p53 and PUMA Levels in Acute Myelogenous Leukemia Blood, 2007, 110, 654-654.	0.6	0
338	Roles of Raf/MEK/ERK and PI3K/Akt/mTOR Pathways in Prevention of Apoptosis and Induction of Drug Resistance in Myeloid Hematopoietic Cells Blood, 2007, 110, 641-641.	0.6	0
339	Concomitant Inhibition of MDM2 and Bcl-2 Protein Function Synergistically Induce Mitochondrial Apoptosis in AML. Cell Cycle, 2006, 5, 2778-2786.	1.3	91
340	Mdm2 inhibitor Nutlin-3a induces p53-mediated apoptosis by transcription-dependent and transcription-independent mechanisms and may overcome Atm-mediated resistance to fludarabine in chronic lymphocytic leukemia. Blood, 2006, 108, 993-1000.	0.6	221
341	Mechanisms of apoptosis sensitivity and resistance to the BH3 mimetic ABT-737 in acute myeloid leukemia. Cancer Cell, 2006, 10, 375-388.	7.7	921
342	Simultaneous Inhibition of PDK1/AKT and Fms-Like Tyrosine Kinase 3 Signaling by a Small-Molecule KP372-1 Induces Mitochondrial Dysfunction and Apoptosis in Acute Myelogenous Leukemia. Cancer Research, 2006, 66, 3737-3746.	0.4	101

#	Article	IF	CITATIONS
343	Synthetic triterpenoid 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid induces growth arrest in HER2-overexpressing breast cancer cells. Molecular Cancer Therapeutics, 2006, 5, 317-328.	1.9	68
344	Rapamycin Analogs Reduce mTORC2 Signaling and Inhibit AKT Activation in AML. Blood, 2006, 108, 156-156.	0.6	2
345	Massive Mobilization of AML Cells into Circulation by Disruption of Leukemia/Stroma Cell Interactions Using CXCR4 Antagonist AMD3100: First Evidence in Patients and Potential for Abolishing Bone Marrow Microenvironment-Mediated Resistance Blood, 2006, 108, 568-568.	0.6	15
346	Bone Marrow Stroma-Produced TGF-beta1 Confers Chemoresistance of Leukemic Cells Blood, 2006, 108, 4248-4248.	0.6	0
347	Overexpression of CXCR4 in Acute Myeloid Leukemia Predicts Adverse Overall and Progression-Free Survival Independently of FLT3 Gene Mutation Blood, 2006, 108, 1890-1890.	0.6	0
348	CXCR4 Up-Regulation by Imatinib Mesylate Induces CML Cell Migration to Bone Marrow Stroma and Promotes Survival of Chemoresistant Quiescent CML Cells Blood, 2006, 108, 2123-2123.	0.6	0
349	MDM2 antagonists induce p53-dependent apoptosis in AML: implications for leukemia therapy. Blood, 2005, 106, 3150-3159.	0.6	362
350	Development of a Conditional In vivo Model to Evaluate the Efficacy of Small Molecule Inhibitors for the Treatment of Raf-Transformed Hematopoietic Cells. Cancer Research, 2005, 65, 9962-9970.	0.4	16
351	Raf Inhibitor BAY 43-9006 Induces Bim Dephosphorylation and Activates the Intracellular Apoptotic Pathway in AML Blood, 2005, 106, 3367-3367.	0.6	1
352	Inhibition of Bcl-2 Signaling by Small Molecule BH3 Inhibitor GX15-070 as a Novel Therapeutic Strategy in AML Blood, 2005, 106, 3372-3372.	0.6	1
353	Disruption of Leukemia/Stroma Cell Interactions by CXCR4 Antagonist AMD3465 Enhances Chemotherapy-Induced Apoptosis in AML Blood, 2005, 106, 474-474.	0.6	6
354	Immunomodulatory Effects of the Triterpenoid CDDO after Allogeneic Bone Marrow Transplantation in Mice: Reduction of Acute Graft-Versus-Host Disease Lethality Blood, 2005, 106, 1316-1316.	0.6	0
355	Guggulsterones Induce Apoptosis and Differentiation in AML: Identification of Isomer-Specific Antileukemic Activities of the Pregnanedienedione Structure Blood, 2005, 106, 4466-4466.	0.6	0
356	MDM2 Inhibitor Nutlin-3a Induces p53-Dependent Apoptosis Via Transcription-Dependent and -Independent Pathways and Overcomes Fludarabine-Resistance in CLL Blood, 2005, 106, 445-445.	0.6	0
357	A Novel Mechanism of Action of Methyl-2-cyano-3,12 dioxoolean-1,9 diene-28-oate (CDDO-Me): Direct Permeabilization of the Inner Mitochondrial Membrane To Inhibit Electron Transport and Induce Apoptosis Blood, 2005, 106, 4462-4462.	0.6	0
358	Regulation and Targeting of Eg5 in Blast Crisis CML: Overcoming Imatinib Resistance Blood, 2005, 106, 2877-2877.	0.6	0
359	CDDO and CDDO-Im Reduce Tumor Burden in a Transgenic Mouse Model of CLL Blood, 2004, 104, 3477-3477.	0.6	0
360	High Glucose Activates AKT Signaling and Induces Upregulation of Genes Encoding Glycolytic Enzymes Glut-1 and HK-2 in Acute Lymphocytic Leukemia Blood, 2004, 104, 2049-2049.	0.6	0

#	Article	IF	CITATIONS
361	CXCR4 Inhibition as a Therapeutic Strategy in Leukemia Blood, 2004, 104, 456-456.	0.6	1
362	Mesenchymal Stem Cells Promote Survival of Leukemic Cells Via Integrin-Linked Kinase (ILK)-Dependent Akt and STAT3 Activation: Implications for Leukemia Therapy Blood, 2004, 104, 3377-3377.	0.6	0
363	Triterpenoid Methyl-CDDO Is a Potent Inducer of Apoptosis in CD34+ AML Progenitor Cells Via Activation of SAPK Pathways and Inhibition of MAPK Cascades Blood, 2004, 104, 2533-2533.	0.6	0
364	Inhibition of Bcl-2 Signaling at Nanomolar Concentrations by Small Molecule BH3 Inhibitor, ABT-737 as a Novel Therapeutic Strategy in Acute Myeloid Leukemia (AML) Blood, 2004, 104, 760-760.	0.6	2
365	Peroxisome proliferator-activated receptor gamma and retinoid X receptor ligands are potent inducers of differentiation and apoptosis in leukemias. Molecular Cancer Therapeutics, 2004, 3, 1249-62.	1.9	66
366	Independent prognostic significance of day 21 cytogenetic findings in newly-diagnosed acute myeloid leukemia or refractory anemia with excess blasts. Haematologica, 2003, 88, 733-6.	1.7	9
367	Role of peroxisome proliferator-activated receptor-γ in hematologic malignancies. Current Opinion in Hematology, 2002, 9, 294-302.	1.2	31
368	Novel triterpenoid CDDO-Me is a potent inducer of apoptosis and differentiation in acute myelogenous leukemia. Blood, 2002, 99, 326-335.	0.6	162
369	The anti-apoptotic genes Bcl-XLand Bcl-2 are over-expressed and contribute to chemoresistance of non-proliferating leukaemic CD34+cells. British Journal of Haematology, 2002, 118, 521-534.	1.2	140
370	Therapeutic targeting of the MEK/MAPK signal transduction module in acute myeloid leukemia. Journal of Clinical Investigation, 2001, 108, 851-859.	3.9	277
371	Apoptosis regulating proteins as targets of therapy for haematological malignancies. Expert Opinion on Investigational Drugs, 1999, 8, 2027-2057.	1.9	16