William H Gaze

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6867236/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Using the class 1 integron-integrase gene as a proxy for anthropogenic pollution. ISME Journal, 2015, 9, 1269-1279.	9.8	974
2	The role of the natural environment in the emergence of antibiotic resistance in Gram-negative bacteria. Lancet Infectious Diseases, The, 2013, 13, 155-165.	9.1	839
3	Human Health Risk Assessment (HHRA) for Environmental Development and Transfer of Antibiotic Resistance. Environmental Health Perspectives, 2013, 121, 993-1001.	6.0	508
4	The Scourge of Antibiotic Resistance: The Important Role of the Environment. Clinical Infectious Diseases, 2013, 57, 704-710.	5.8	487
5	Impacts of anthropogenic activity on the ecology of class 1 integrons and integron-associated genes in the environment. ISME Journal, 2011, 5, 1253-1261.	9.8	377
6	Shedding of SARS-CoV-2 in feces and urine and its potential role in person-to-person transmission and the environment-based spread of COVID-19. Science of the Total Environment, 2020, 749, 141364.	8.0	293
7	Critical knowledge gaps and research needs related to the environmental dimensions of antibiotic resistance. Environment International, 2018, 117, 132-138.	10.0	281
8	Human Health and Ocean Pollution. Annals of Global Health, 2020, 86, 151.	2.0	240
9	Incidence of Class 1 Integrons in a Quaternary Ammonium Compound-Polluted Environment. Antimicrobial Agents and Chemotherapy, 2005, 49, 1802-1807.	3.2	209
10	Prevalence of Sulfonamide Resistance Genes in Bacterial Isolates from Manured Agricultural Soils and Pig Slurry in the United Kingdom. Antimicrobial Agents and Chemotherapy, 2009, 53, 696-702.	3.2	188
11	Waste water effluent contributes to the dissemination of CTX-M-15 in the natural environment. Journal of Antimicrobial Chemotherapy, 2014, 69, 1785-1791.	3.0	184
12	Exposure to and colonisation by antibiotic-resistant E. coli in UK coastal water users: Environmental surveillance, exposure assessment, and epidemiological study (Beach Bum Survey). Environment International, 2018, 114, 326-333.	10.0	182
13	The dynamic architecture of the metabolic switch in Streptomyces coelicolor. BMC Genomics, 2010, 11, 10.	2.8	171
14	Human recreational exposure to antibiotic resistant bacteria in coastal bathing waters. Environment International, 2015, 82, 92-100.	10.0	158
15	Functional metagenomic analysis reveals rivers are a reservoir for diverse antibiotic resistance genes. Veterinary Microbiology, 2014, 171, 441-447.	1.9	145
16	Influence of Humans on Evolution and Mobilization of Environmental Antibiotic Resistome. Emerging Infectious Diseases, 2013, 19, .	4.3	118
17	Validated predictive modelling of the environmental resistome. ISME Journal, 2015, 9, 1467-1476.	9.8	117
18	Monitoring SARS-CoV-2 in municipal wastewater to evaluate the success of lockdown measures for controlling COVID-19 in the UK. Water Research, 2021, 200, 117214.	11.3	117

WILLIAM H GAZE

#	Article	IF	CITATIONS
19	Novel Insights into Selection for Antibiotic Resistance in Complex Microbial Communities. MBio, 2018, 9, .	4.1	110
20	CRISPR-Cas antimicrobials: Challenges and future prospects. PLoS Pathogens, 2018, 14, e1006990.	4.7	105
21	Water and sanitation: an essential battlefront in the war on antimicrobial resistance. FEMS Microbiology Ecology, 2018, 94, .	2.7	104
22	The widespread dissemination of integrons throughout bacterial communities in a riverine system. ISME Journal, 2018, 12, 681-691.	9.8	103
23	Selection for antimicrobial resistance is reduced when embedded in a natural microbial community. ISME Journal, 2019, 13, 2927-2937.	9.8	102
24	Evolution of antibiotic resistance at low antibiotic concentrations including selection below the minimal selective concentration. Communications Biology, 2020, 3, 467.	4.4	90
25	Wild small mammals as sentinels for the environmental transmission of antimicrobial resistance. Environmental Research, 2017, 154, 28-34.	7.5	87
26	Interactions between Salmonella typhimurium and Acanthamoeba polyphaga , and Observation of a New Mode of Intracellular Growth within Contractile Vacuoles. Microbial Ecology, 2003, 46, 358-369.	2.8	69
27	Role played by the environment in the emergence and spread of antimicrobial resistance (AMR) through the food chain. EFSA Journal, 2021, 19, e06651.	1.8	68
28	The role of heterotrophic bacteria in feldspar dissolution – an experimental approach. Mineralogical Magazine, 2003, 67, 1157-1170.	1.4	65
29	Integron Prevalence and Diversity in Manured Soil. Applied and Environmental Microbiology, 2011, 77, 684-687.	3.1	64
30	Pathogen Quantitation in Complex Matrices: A Multi-Operator Comparison of DNA Extraction Methods with a Novel Assessment of PCR Inhibition. PLoS ONE, 2011, 6, e17916.	2.5	64
31	Dawning of a new ERA: Environmental Risk Assessment of antibiotics and their potential to select for antimicrobial resistance. Water Research, 2021, 200, 117233.	11.3	56
32	A global multinational survey of cefotaxime-resistant coliforms in urban wastewater treatment plants. Environment International, 2020, 144, 106035.	10.0	55
33	Spatiotemporal profiling of antibiotics and resistance genes in a river catchment: Human population as the main driver of antibiotic and antibiotic resistance gene presence in the environment. Water Research, 2021, 203, 117533.	11.3	49
34	Environmental Monitoring of Mycobacterium bovis in Badger Feces and Badger Sett Soil by Real-Time PCR, as Confirmed by Immunofluorescence, Immunocapture, and Cultivation. Applied and Environmental Microbiology, 2007, 73, 7471-7473.	3.1	48
35	Ovine pedomics: the first study of the ovine foot 16S rRNA-based microbiome. ISME Journal, 2011, 5, 1426-1437.	9.8	46
36	Long-term antibiotic exposure in soil is associated with changes in microbial community structure and prevalence of class 1 integrons. FEMS Microbiology Ecology, 2016, 92, fiw159.	2.7	46

WILLIAM H GAZE

#	Article	IF	CITATIONS
37	Dissipation of the antibiotic sulfamethoxazole in a soil amended with anaerobically digested cattle manure. Journal of Hazardous Materials, 2019, 378, 120769.	12.4	41
38	Is it safe to go back into the water? A systematic review and meta-analysis of the risk of acquiring infections from recreational exposure to seawater. International Journal of Epidemiology, 2018, 47, 572-586.	1.9	38
39	Trace levels of sewage effluent are sufficient to increase class 1 integron prevalence in freshwater biofilms without changing the core community. Water Research, 2016, 106, 163-170.	11.3	37
40	Comparing the selective and co-selective effects of different antimicrobials in bacterial communities. International Journal of Antimicrobial Agents, 2019, 53, 767-773.	2.5	36
41	Natural recreational waters and the risk that exposure to antibiotic resistant bacteria poses to human health. Current Opinion in Microbiology, 2022, 65, 40-46.	5.1	33
42	Improved Detection of Staphylococcus intermedius Group in a Routine Diagnostic Laboratory. Journal of Clinical Microbiology, 2015, 53, 961-963.	3.9	32
43	In Situ Monitoring of Streptothricin Production by Streptomyces rochei F20 in Soil and Rhizosphere. Applied and Environmental Microbiology, 2004, 70, 5222-5228.	3.1	31
44	Antibiotic Resistance in the Environment, with Particular Reference to MRSA. Advances in Applied Microbiology, 2008, 63, 249-280.	2.4	31
45	The variability and seasonality of the environmental reservoir of Mycobacterium bovis shed by wild European badgers. Scientific Reports, 2015, 5, 12318.	3.3	31
46	Staphylococcus cornubiensis sp. nov., a member of the Staphylococcus intermedius Group (SIG). International Journal of Systematic and Evolutionary Microbiology, 2018, 68, 3404-3408.	1.7	31
47	Cultivation-Independent Screening Revealed Hot Spots of IncP-1, IncP-7 and IncP-9 Plasmid Occurrence in Different Environmental Habitats. PLoS ONE, 2014, 9, e89922.	2.5	31
48	Evaluating the Mental Models Approach to Developing a Risk Communication: A Scoping Review of the Evidence. Risk Analysis, 2017, 37, 2132-2149.	2.7	30
49	Sulfamethoxazole persistence in a river water ecosystem and its effects on the natural microbial community and Lemna minor plant. Microchemical Journal, 2019, 149, 103999.	4.5	30
50	Novel clinically relevant antibiotic resistance genes associated with sewage sludge and industrial waste streams revealed by functional metagenomic screening. Environment International, 2019, 132, 105120.	10.0	30
51	What is the research evidence for antibiotic resistance exposure and transmission to humans from the environment? A systematic map protocol. Environmental Evidence, 2020, 9, 12.	2.7	30
52	The â€~SELection End points in Communities of bacTeria' (SELECT) Method: A Novel Experimental Assay to Facilitate Risk Assessment of Selection for Antimicrobial Resistance in the Environment. Environmental Health Perspectives, 2020, 128, 107007.	6.0	28
53	Performance of a Noninvasive Test for Detecting Mycobacterium bovis Shedding in European Badger (Meles meles) Populations. Journal of Clinical Microbiology, 2015, 53, 2316-2323.	3.9	24
54	Using the wax moth larva <i>Galleria mellonella</i> infection model to detect emerging bacterial pathogens. PeerJ, 2019, 6, e6150.	2.0	24

WILLIAM H GAZE

#	Article	IF	CITATIONS
55	An Inter-Laboratory Validation of a Real Time PCR Assay to Measure Host Excretion of Bacterial Pathogens, Particularly of Mycobacterium bovis. PLoS ONE, 2011, 6, e27369.	2.5	22
56	Structural and Biochemical Characterization of Rm3, a Subclass B3 Metallo-β-Lactamase Identified from a Functional Metagenomic Study. Antimicrobial Agents and Chemotherapy, 2016, 60, 5828-5840.	3.2	22
57	Building knowledge of university campus population dynamics to enhance near-to-source sewage surveillance for SARS-CoV-2 detection. Science of the Total Environment, 2022, 806, 150406.	8.0	22
58	Developing a local antimicrobial resistance action plan: the Cornwall One Health Antimicrobial Resistance Group. Journal of Antimicrobial Chemotherapy, 2017, 72, 2661-2665.	3.0	21
59	Carbapenem resistance in bacteria isolated from soil and water environments in Algeria. Journal of Global Antimicrobial Resistance, 2018, 15, 262-267.	2.2	21
60	The role of stereochemistry of antibiotic agents in the development of antibiotic resistance in the environment. Environment International, 2020, 139, 105681.	10.0	21
61	Meticillin-resistant Staphylococcus aureus in pigs from Thailand. International Journal of Antimicrobial Agents, 2011, 38, 86-87.	2.5	19
62	Mimivirus-like Particles in Acanthamoebae from Sewage Sludge. Emerging Infectious Diseases, 2011, 17, 1127-1129.	4.3	17
63	Zinc can counteract selection for ciprofloxacin resistance. FEMS Microbiology Letters, 2020, 367, .	1.8	16
64	Coastal clustering of HEV; Cornwall, UK. European Journal of Gastroenterology and Hepatology, 2016, 28, 323-327.	1.6	15
65	Why don't the British eat locally harvested shellfish? The role of misconceptions and knowledge gaps. Appetite, 2019, 143, 104352.	3.7	15
66	Gene Detection, Expression and Related Enzyme Activity in Soil. , 2006, , 217-255.		11
67	Determining the prevalence, identity and possible origin of bacterial pathogens in soil. Environmental Microbiology, 2020, 22, 5327-5340.	3.8	9
68	Antifungal Exposure and Resistance Development: Defining Minimal Selective Antifungal Concentrations and Testing Methodologies. Frontiers in Fungal Biology, 0, 3, .	2.0	8
69	Antibiotic Resistance in the Environment: Expert Perspectives. Handbook of Environmental Chemistry, 2020, , 1-18.	0.4	5
70	A cross-sectional study on the prevalence of illness in coastal bathers compared to non-bathers in England and Wales: Findings from the Beach User Health Survey. Water Research, 2020, 176, 115700.	11.3	5
71	The hidden resistome of retail chicken meat. Journal of Global Antimicrobial Resistance, 2015, 3, 44-46.	2.2	4
72	Stereoselective Bacterial Metabolism of Antibiotics in Environmental Bacteria – A Novel Biochemical Workflow. Frontiers in Microbiology, 2021, 12, 562157.	3.5	4

#	Article	IF	CITATIONS
73	An SEM study of adhesive disc skeletal structures isolated from trichodinids (Ciliophora:) Tj ETQq1 1 0.784314 rg Parasitology, 1999, 43, 167-174.	BT /Overlo 1.1	ock 10 Tf 50 3
74	Semi-automated Acanthamoeba polyphaga detection and computation of Salmonella typhimurium concentration in spatio-temporal images. Micron, 2011, 42, 911-920.	2.2	3
75	Stereoselective metabolism of chloramphenicol by bacteria isolated from wastewater, and the importance of stereochemistry in environmental risk assessments for antibiotics. Water Research, 2022, 217, 118415.	11.3	3
76	Evolving gene clusters in soil bacteria. , 0, , 201-222.		1
77	Targeting antimicrobial resistance genes in clinical isolates from healthcare-associated infections using CRISPR-Cas9. Access Microbiology, 2019, 1, .	0.5	0
78	The selection and co-selection of antimicrobial resistance by non-antibiotic drugs and plant protection products. Access Microbiology, 2020, 2, .	0.5	0