
Christopher E Brightling

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6867172/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Global Initiative for Asthma Strategy 2021. Respirology, 2022, 27, 14-35.	2.3	31
2	Global Initiative for Asthma Strategy 2021: executive summary and rationale for key changes. European Respiratory Journal, 2022, 59, 2102730.	6.7	218
3	Global Initiative for Asthma Strategy 2021: Executive Summary and Rationale for Key Changes. American Journal of Respiratory and Critical Care Medicine, 2022, 205, 17-35.	5.6	196
4	Global Initiative for Asthma Strategy 2021. Executive Summary and Rationale for Key Changes. Archivos De Bronconeumologia, 2022, 58, 35-51.	0.8	31
5	Association of gut-related metabolites with respiratory symptoms in COVID-19: A proof-of-concept study. Nutrition, 2022, 96, 111585.	2.4	6
6	Bronchiectasis, the Latest Eosinophilic Airway Disease: What About the Microbiome?. American Journal of Respiratory and Critical Care Medicine, 2022, 205, 860-862.	5.6	3
7	Astegolimab, an anti-ST2, in chronic obstructive pulmonary disease (COPD-ST2OP): a phase 2a, placebo-controlled trial. Lancet Respiratory Medicine,the, 2022, 10, 469-477.	10.7	35
8	The role of small airway dysfunction in asthma control and exacerbations: a longitudinal, observational analysis using data from the ATLANTIS study. Lancet Respiratory Medicine,the, 2022, 10, 661-668.	10.7	41
9	Bronchial thermoplasty: what we know, what we don't know, and what we need to know. European Respiratory Journal, 2022, 59, 2102018.	6.7	8
10	Stressed out - The role of oxidative stress in airway smooth muscle dysfunction in asthma and COPD. Free Radical Biology and Medicine, 2022, 185, 97-119.	2.9	11
11	Feno differentiates epithelial gene expression clusters: Exploratory analysis from the MESOS randomized controlled trial. Journal of Allergy and Clinical Immunology, 2022, 150, 830-840.	2.9	7
12	Inflammatory Endotype–associated Airway Microbiome in Chronic Obstructive Pulmonary Disease Clinical Stability and Exacerbations: A Multicohort Longitudinal Analysis. American Journal of Respiratory and Critical Care Medicine, 2021, 203, 1488-1502.	5.6	107
13	ARIA digital anamorphosis: Digital transformation of health and care in airway diseases from research to practice. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 168-190.	5.7	46
14	Cabbage and fermented vegetables: From death rate heterogeneity in countries to candidates for mitigation strategies of severe COVIDâ€19. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 735-750.	5.7	83
15	Effectiveness of fevipiprant in reducing exacerbations in patients with severe asthma (LUSTER-1 and) Tj ETQq1 1	0.784314 10.7	rgBT /Overld
16	Peripheral and proximal lung ventilation in asthma: Short-term variation and response to bronchodilator inhalation. Journal of Allergy and Clinical Immunology, 2021, 147, 2154-2161.e6.	2.9	5
17	Composite type-2 biomarker strategy versus a symptom–risk-based algorithm to adjust corticosteroid dose in patients with severe asthma: a multicentre, single-blind, parallel group, randomised controlled trial. Lancet Respiratory Medicine,the, 2021, 9, 57-68.	10.7	88
18	Interleukinâ€18, ILâ€18 binding protein and ILâ€18 receptor expression in asthma: a hypothesis showing ILâ€18 promotes epithelial cell differentiation. Clinical and Translational Immunology, 2021, 10, e1301.	3.8	3

#	Article	IF	CITATIONS
19	Volatile organic compounds in a headspace sampling system and asthmatics sputum samples. Journal of Breath Research, 2021, 15, 027102.	3.0	4
20	Multi-omics links IL-6 trans-signalling with neutrophil extracellular trap formation and <i>Haemophilus</i> infection in COPD. European Respiratory Journal, 2021, 58, 2003312.	6.7	30
21	The different phenotypes of COPD. British Medical Bulletin, 2021, 137, 82-97.	6.9	12
22	High serum G-CSF characterises neutrophilic COPD exacerbations associated with dysbiosis. ERJ Open Research, 2021, 7, 00836-2020.	2.6	3
23	Lung microbiome composition and bronchial epithelial gene expression in patients with COPD versus healthy individuals: a bacterial 16S rRNA gene sequencing and host transcriptomic analysis. Lancet Microbe, The, 2021, 2, e300-e310.	7.3	60
24	A systematic review of the diagnostic accuracy of volatile organic compounds in airway diseases and their relation to markers of type-2 inflammation. ERJ Open Research, 2021, 7, 00030-2021.	2.6	5
25	Tezepelumab in Adults and Adolescents with Severe, Uncontrolled Asthma. New England Journal of Medicine, 2021, 384, 1800-1809.	27.0	435
26	The pharmacology of the prostaglandin D2 receptor 2 (DP2) receptor antagonist, fevipiprant. Pulmonary Pharmacology and Therapeutics, 2021, 68, 102030.	2.6	5
27	Effect of tezepelumab on airway inflammatory cells, remodelling, and hyperresponsiveness in patients with moderate-to-severe uncontrolled asthma (CASCADE): a double-blind, randomised, placebo-controlled, phase 2 trial. Lancet Respiratory Medicine,the, 2021, 9, 1299-1312.	10.7	139
28	Factors Associated with Frequent Exacerbations in the UK Severe Asthma Registry. Journal of Allergy and Clinical Immunology: in Practice, 2021, 9, 2691-2701.e1.	3.8	13
29	Pathological disease in the lung periphery after acute COVID-19. Lancet Respiratory Medicine,the, 2021, 9, 1089-1090.	10.7	6
30	The inflammatory profile of exacerbations in patients with severe refractory eosinophilic asthma receiving mepolizumab (the MEX study): a prospective observational study. Lancet Respiratory Medicine,the, 2021, 9, 1174-1184.	10.7	49
31	Phenotypic and functional translation of IL33 genetics in asthma. Journal of Allergy and Clinical Immunology, 2021, 147, 144-157.	2.9	29
32	3TR: a pan-European cross-disease research consortium aimed at improving personalised biological treatment of asthma and COPD. European Respiratory Journal, 2021, 58, 2102168.	6.7	8
33	Physical, cognitive, and mental health impacts of COVID-19 after hospitalisation (PHOSP-COVID): a UK multicentre, prospective cohort study. Lancet Respiratory Medicine,the, 2021, 9, 1275-1287.	10.7	394
34	Management of severe asthma: a European Respiratory Society/American Thoracic Society guideline. European Respiratory Journal, 2020, 55, 1900588.	6.7	380
35	Sputum microbiomic clustering in asthma and chronic obstructive pulmonary disease reveals a <i>Haemophilus</i> â€predominant subgroup. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 808-817.	5.7	33
36	The impact of the prostaglandin D ₂ receptor 2 and its downstream effects on the pathophysiology of asthma. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 761-768.	5.7	40

#	Article	IF	CITATIONS
37	Blood eosinophil count and airway epithelial transcriptome relationships in COPD versus asthma. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 370-380.	5.7	37
38	Asthma exacerbations during pregnancy: A need for precision medicine. Respirology, 2020, 25, 670-671.	2.3	1
39	Resistome analyses of sputum from COPD and healthy subjects reveals bacterial load-related prevalence of target genes. Thorax, 2020, 75, 8-16.	5.6	18
40	Guidance production before evidence generation for critical issues: the example of COVID-19. European Respiratory Review, 2020, 29, 200310.	7.1	5
41	The sputum microbiome is distinct between COPD and health, independent of smoking history. Respiratory Research, 2020, 21, 183.	3.6	45
42	Socio-demographic heterogeneity in the prevalence of COVID-19 during lockdown is associated with ethnicity and household size: Results from an observational cohort study. EClinicalMedicine, 2020, 25, 100466.	7.1	129
43	Fibrocyte localisation to the ASM bundle in asthma: bidirectional effects on cell phenotype and behaviour. Clinical and Translational Immunology, 2020, 9, e1205.	3.8	7
44	A Refined View of Airway Microbiome in Chronic Obstructive Pulmonary Disease at Species and Strain-Levels. Frontiers in Microbiology, 2020, 11, 1758.	3.5	36
45	Proning reduces ventilation heterogeneity in patients with elevated BMI: implications for COVID-19 pneumonia management?. ERJ Open Research, 2020, 6, 00292-2020.	2.6	6
46	Multi-omic meta-analysis identifies functional signatures of airway microbiome in chronic obstructive pulmonary disease. ISME Journal, 2020, 14, 2748-2765.	9.8	43
47	Bacteria and sputum inflammatory cell counts; a COPD cohort analysis. Respiratory Research, 2020, 21, 289.	3.6	38
48	Pathophysiological regulation of lung function by the free fatty acid receptor FFA4. Science Translational Medicine, 2020, 12, .	12.4	20
49	Letter from the <scp>UK</scp> . Respirology, 2020, 25, 1323-1324.	2.3	1
50	Increased ventilation heterogeneity in asthma can be attributed to proximal bronchioles. European Respiratory Journal, 2020, 55, 1901345.	6.7	10
51	Expanding the spectrum of European Respiratory Society official scientific documents: short documents complement clinical practice guidelines, statements and technical standards. European Respiratory Journal, 2020, 55, 2001030.	6.7	3
52	ST2 expression and release by the bronchial epithelium is downregulated in asthma. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 3184-3194.	5.7	10
53	GINA fosters World Asthma Day 2020 to prevent asthma deaths. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 318, L998-L1000.	2.9	8
54	Blood Eosinophil Counts in Clinical Trials for Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 660-671.	5.6	62

#	Article	IF	CITATIONS
55	>Detection of Cell-Dissociated Non-Typeable Haemophilus influenzae in the Airways of Patients with Chronic Obstructive Pulmonary Disease. International Journal of COPD, 2020, Volume 15, 1357-1365.	2.3	0
56	Sputum microbiome profiling in COPD: beyond singular pathogen detection. Thorax, 2020, 75, 338-344.	5.6	37
57	Clinical utility of fractional exhaled nitric oxide in severe asthma management. European Respiratory Journal, 2020, 55, 1901633.	6.7	83
58	Managing Chronic Cough Due to Asthma and NAEB in Adults and Adolescents. Chest, 2020, 158, 68-96.	0.8	36
59	The stability of blood Eosinophils in chronic obstructive pulmonary disease. Respiratory Research, 2020, 21, 15.	3.6	32
60	Phenotypic and functional translation of IL1RL1 locus polymorphisms in lung tissue and asthmatic airway epithelium. JCI Insight, 2020, 5, .	5.0	26
61	Use of the ReCIVA device in breath sampling of patients with acute breathlessness: a feasibility study. ERJ Open Research, 2020, 6, 00119-2020.	2.6	12
62	Cohort Profile: Extended Cohort for E-health, Environment and DNA (EXCEED). International Journal of Epidemiology, 2019, 48, 678-679j.	1.9	9
63	Neutrophil elastase as a biomarker for bacterial infection in COPD. Respiratory Research, 2019, 20, 170.	3.6	53
64	<p>Sputum Streptococcus pneumoniae is reduced in COPD following treatment with benralizumab</p> . International Journal of COPD, 2019, Volume 14, 1177-1185.	2.3	12
65	T2 Biologics for Chronic Obstructive Pulmonary Disease. Journal of Allergy and Clinical Immunology: in Practice, 2019, 7, 1405-1416.	3.8	37
66	Cough and Eosinophilia. Journal of Allergy and Clinical Immunology: in Practice, 2019, 7, 1740-1747.	3.8	29
67	Comparison of CT ventilation imaging and hyperpolarised gas MRI: effects of breathing manoeuvre. Physics in Medicine and Biology, 2019, 64, 055013.	3.0	7
68	Spread the Word About CHEST in 2019. Chest, 2019, 155, 1-4.	0.8	1
69	Mepolizumab does not alter the blood basophil count in severe asthma. Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 2488-2490.	5.7	9
70	Benralizumab for the Prevention of COPD Exacerbations. New England Journal of Medicine, 2019, 381, 1023-1034.	27.0	180
71	Airway inflammation in COPD: progress to precision medicine. European Respiratory Journal, 2019, 54, 1900651.	6.7	163
72	Functional CT imaging for identification of the spatial determinants of small-airways disease in adults with asthma. Journal of Allergy and Clinical Immunology, 2019, 144, 83-93.	2.9	34

#	Article	IF	CITATIONS
73	Assessment of breath volatile organic compounds in acute cardiorespiratory breathlessness: a protocol describing a prospective real-world observational study. BMJ Open, 2019, 9, e025486.	1.9	24
74	Exploring the relevance and extent of small airways dysfunction in asthma (ATLANTIS): baseline data from a prospective cohort study. Lancet Respiratory Medicine,the, 2019, 7, 402-416.	10.7	225
75	DP ₂ antagonism reduces airway smooth muscle mass in asthma by decreasing eosinophilia and myofibroblast recruitment. Science Translational Medicine, 2019, 11, .	12.4	57
76	Fatty airways: a source of good and bad fats?. European Respiratory Journal, 2019, 54, 1902060.	6.7	3
77	The ERS fellowship portfolio: fostering excellence and diversity. European Respiratory Journal, 2019, 54, 1901503.	6.7	3
78	Comment on "Unraveling a Clinical Paradox: Why Does Bronchial Thermoplasty Work in Asthma?― American Journal of Respiratory Cell and Molecular Biology, 2019, 61, 660-661.	2.9	5
79	High degree of polyclonality hinders somatic mutation calling in lung brush samples of COPD cases and controls. Scientific Reports, 2019, 9, 20158.	3.3	1
80	Tensin1 expression and function in chronic obstructive pulmonary disease. Scientific Reports, 2019, 9, 18942.	3.3	9
81	Moderate-to-severe asthma in individuals of European ancestry: a genome-wide association study. Lancet Respiratory Medicine,the, 2019, 7, 20-34.	10.7	183
82	Reply. Journal of Allergy and Clinical Immunology, 2019, 143, 1265-1266.	2.9	0
83	Imaging severe asthma. , 2019, , 113-131.		Ο
84	Biologic Drugs: A New Target Therapy in COPD?. COPD: Journal of Chronic Obstructive Pulmonary Disease, 2018, 15, 99-107.	1.6	24
85	Pharmacological treatment of bacterial infections of the respiratory tract. Anaesthesia and Intensive Care Medicine, 2018, 19, 72-75.	0.2	2
86	Fevipiprant in the treatment of asthma. Expert Opinion on Investigational Drugs, 2018, 27, 199-207.	4.1	23
87	Sputum microbiome temporal variability and dysbiosis in chronic obstructive pulmonary disease exacerbations: an analysis of the COPDMAP study. Thorax, 2018, 73, 331-338.	5.6	101
88	Multiancestry association study identifies new asthma risk loci that colocalize with immune-cell enhancer marks. Nature Genetics, 2018, 50, 42-53.	21.4	426
89	New and emerging drug treatments for severe asthma. Clinical and Experimental Allergy, 2018, 48, 241-252.	2.9	32
90	Biological exacerbation clusters demonstrate asthma and chronic obstructive pulmonary disease overlap with distinct mediator and microbiome profiles. Journal of Allergy and Clinical Immunology, 2018, 141, 2027-2036.e12.	2.9	124

#	Article	IF	CITATIONS
91	<i>In vitro</i> , <i>in silico</i> and <i>in vivo</i> study challenges the impact of bronchial thermoplasty on acute airway smooth muscle mass loss. European Respiratory Journal, 2018, 51, 1701680.	6.7	42
92	Opsonic Phagocytosis in Chronic Obstructive Pulmonary Disease Is Enhanced by Nrf2 Agonists. American Journal of Respiratory and Critical Care Medicine, 2018, 198, 739-750.	5.6	53
93	Airway pathological heterogeneity in asthma: Visualization of disease microclusters using topological data analysis. Journal of Allergy and Clinical Immunology, 2018, 142, 1457-1468.	2.9	27
94	Sputum Moraxella catarrhalis strains exhibit diversity within and between COPD subjects. International Journal of COPD, 2018, Volume 13, 3663-3667.	2.3	4
95	ERS Clinical Research Collaborations: underpinning research excellence. European Respiratory Journal, 2018, 52, 1801534.	6.7	39
96	Face mask sampling reveals antimicrobial resistance genes in exhaled aerosols from patients with chronic obstructive pulmonary disease and healthy volunteers. BMJ Open Respiratory Research, 2018, 5, e000321.	3.0	24
97	InÂvivo imaging reveals increased eosinophil uptake in the lungs of obese asthmatic patients. Journal of Allergy and Clinical Immunology, 2018, 142, 1659-1662.e8.	2.9	30
98	Tralokinumab for severe, uncontrolled asthma (STRATOS 1 and STRATOS 2): two randomised, double-blind, placebo-controlled, phase 3 clinical trials. Lancet Respiratory Medicine,the, 2018, 6, 511-525.	10.7	175
99	Effect of tralokinumab, an interleukin-13 neutralising monoclonal antibody, on eosinophilic airway inflammation in uncontrolled moderate-to-severe asthma (MESOS): a multicentre, double-blind, randomised, placebo-controlled phase 2 trial. Lancet Respiratory Medicine,the, 2018, 6, 499-510.	10.7	104
100	Urgent need for pragmatic trial platforms in severe asthma. Lancet Respiratory Medicine,the, 2018, 6, 581-583.	10.7	15
101	A randomised pragmatic trial of corticosteroid optimization in severe asthma using a composite biomarker algorithm to adjust corticosteroid dose versus standard care: study protocol for a randomised trial. Trials, 2018, 19, 5.	1.6	26
102	Modelling the effect of gravity on inert-gas washout outputs. Physiological Reports, 2018, 6, e13709.	1.7	13
103	Temporarily quadrupling the dose of inhaled steroid to prevent asthma exacerbations: FAST. Health Technology Assessment, 2018, 22, 1-82.	2.8	4
104	Clinical trial research in focus: do trials prepare us to deliver precision medicine in those with severe asthma?. Lancet Respiratory Medicine,the, 2017, 5, 92-95.	10.7	4
105	Genome-wide association analyses for lung function and chronic obstructive pulmonary disease identify new loci and potential druggable targets. Nature Genetics, 2017, 49, 416-425.	21.4	257
106	HMGB1 is upregulated in the airways in asthma and potentiates airway smooth muscle contraction via TLR4. Journal of Allergy and Clinical Immunology, 2017, 140, 584-587.e8.	2.9	55
107	Human group 2 innate lymphoid cells do not express the IL-5 receptor. Journal of Allergy and Clinical Immunology, 2017, 140, 1430-1433.e4.	2.9	14
108	Regional Ventilation Changes in the Lung: Treatment Response Mapping by Using Hyperpolarized Gas MR Imaging as a Quantitative Biomarker. Radiology, 2017, 284, 854-861.	7.3	26

#	Article	IF	CITATIONS
109	Emerging Therapies in Severe Eosinophilic Asthma. Archivos De Bronconeumologia, 2017, 53, 233-234.	0.8	0
110	Associations in asthma between quantitative computed tomography andÂbronchial biopsy-derived airway remodelling. European Respiratory Journal, 2017, 49, 1601507.	6.7	32
111	Impaired Mitochondrial Microbicidal Responses in Chronic Obstructive Pulmonary Disease Macrophages. American Journal of Respiratory and Critical Care Medicine, 2017, 196, 845-855.	5.6	70
112	Emerging Therapies in Severe Eosinophilic Asthma. Archivos De Bronconeumologia, 2017, 53, 233-234.	0.8	0
113	Blood and sputum eosinophils in COPD; relationship with bacterial load. Respiratory Research, 2017, 18, 88.	3.6	94
114	Pathogenesis of asthma: implications for precision medicine. Clinical Science, 2017, 131, 1723-1735.	4.3	118
115	Meta-analysis of asthma-related hospitalization in mepolizumab studies of severe eosinophilic asthma. Journal of Allergy and Clinical Immunology, 2017, 139, 1167-1175.e2.	2.9	78
116	Investigating the role of pentraxin 3 as a biomarker for bacterial infection in subjects with COPD. International Journal of COPD, 2017, Volume 12, 1199-1205.	2.3	14
117	Sputum Inflammatory Mediators Are Increased in <i>Aspergillus fumigatus</i> Culture-Positive Asthmatics. Allergy, Asthma and Immunology Research, 2017, 9, 177.	2.9	12
118	Influence of lung CT changes in chronic obstructive pulmonary disease (COPD) on the human lung microbiome. PLoS ONE, 2017, 12, e0180859.	2.5	33
119	Microbiome balance in sputum determined by PCR stratifies COPD exacerbations and shows potential for selective use of antibiotics. PLoS ONE, 2017, 12, e0182833.	2.5	25
120	Effect of Anti–IL-13 Treatment on Airway Dimensions in Severe Asthma. American Journal of Respiratory and Critical Care Medicine, 2016, 194, 118-120.	5.6	13
121	Airway smooth muscle NOX4 is upregulated and modulates ROS generation in COPD. Respiratory Research, 2016, 17, 84.	3.6	35
122	Circulating fibrocytes: Will the real fibrocyte please stand up?. Journal of Allergy and Clinical Immunology, 2016, 137, 1625-1626.	2.9	4
123	MACVIA clinical decision algorithm in adolescents and adults with allergic rhinitis. Journal of Allergy and Clinical Immunology, 2016, 138, 367-374.e2.	2.9	128
124	Relationship between lung function and quantitative computed tomographic parameters of airway remodeling, air trapping, and emphysema in patients with asthma and chronic obstructive pulmonary disease: AAsingle-center study. Journal of Allergy and Clinical Immunology, 2016, 137, 1413-1422.e12.	2.9	78
125	Mepolizumab for the reduction of exacerbations in severe eosinophilic asthma. Expert Review of Respiratory Medicine, 2016, 10, 607-617.	2.5	8
126	Severe eosinophilic asthma treated with mepolizumab stratified by baseline eosinophil thresholds: a secondary analysis of the DREAM and MENSA studies. Lancet Respiratory Medicine,the, 2016, 4, 549-556.	10.7	433

#	Article	IF	CITATIONS
127	Anti-IL-5 for Severe Asthma. Chest, 2016, 150, 766-768.	0.8	13
128	Effects of older age and age of asthma onset on clinical and inflammatory variables in severe refractory asthma. Respiratory Medicine, 2016, 118, 46-52.	2.9	12
129	Fevipiprant, a prostaglandin D 2 receptor 2 antagonist, in patients with persistent eosinophilic asthma: a single-centre, randomised, double-blind, parallel-group, placebo-controlled trial. Lancet Respiratory Medicine,the, 2016, 4, 699-707.	10.7	220
130	Chronic obstructive pulmonary disease phenotypes, biomarkers, and prognostic indicators. Allergy and Asthma Proceedings, 2016, 37, 432-438.	2.2	21
131	FourFold Asthma Study (FAST): a study protocol for a randomised controlled trial evaluating the clinical cost-effectiveness of temporarily quadrupling the dose of inhaled steroid to prevent asthma exacerbations. Trials, 2016, 17, 499.	1.6	4
132	Nociceptin/orphanin FQ (N/OFQ) modulates immunopathology and airway hyperresponsiveness representing a novel target for the treatment of asthma. British Journal of Pharmacology, 2016, 173, 1286-1301.	5.4	25
133	Blood Eosinophils and Outcomes in Severe Hospitalized Exacerbations of COPD. Chest, 2016, 150, 320-328.	0.8	125
134	NADPH Oxidase-4 Overexpression IsÂAssociated With Epithelial Ciliary Dysfunction in Neutrophilic Asthma. Chest, 2016, 149, 1445-1459.	0.8	43
135	Lung microbiome dynamics in COPD exacerbations. European Respiratory Journal, 2016, 47, 1082-1092.	6.7	330
136	Exome-wide analysis of rare coding variation identifies novel associations with COPD and airflow limitation in <i>MOCS3</i> , <i>IFIT3</i> and <i>SERPINA12</i> . Thorax, 2016, 71, 501-509.	5.6	22
137	Eosinophilic airway inflammation: role in asthma and chronic obstructive pulmonary disease. Therapeutic Advances in Chronic Disease, 2016, 7, 34-51.	2.5	230
138	Characterization of acinar airspace involvement in asthmatic patients by using inert gas washout and hyperpolarized 3helium magnetic resonance. Journal of Allergy and Clinical Immunology, 2016, 137, 417-425.	2.9	28
139	Differential Effects of p38, MAPK, PI3K or Rho Kinase Inhibitors on Bacterial Phagocytosis and Efferocytosis by Macrophages in COPD. PLoS ONE, 2016, 11, e0163139.	2.5	49
140	Is the Eosinophil a Leading Villain in Lung Function Decline?. Chest, 2015, 148, 844-846.	0.8	6
141	Association Between Pathogens Detected Using Quantitative Polymerase Chain Reaction With Airway Inflammation in COPD at Stable State and Exacerbations. Chest, 2015, 147, 46-55.	0.8	74
142	Relationship between blood and bronchial submucosal eosinophilia and reticular basement membrane thickening in chronic obstructive pulmonary disease. Respirology, 2015, 20, 667-670.	2.3	70
143	<scp>IL</scp> â€33 drives airway hyperâ€responsiveness through <scp>IL</scp> â€13â€mediated mast cell: airwa smooth muscle crosstalk. Allergy: European Journal of Allergy and Clinical Immunology, 2015, 70, 556-567.	ay 5.7	134
144	Adapting the Electrospinning Process to Provide Three Unique Environments for a Tri-layered In Vitro Model of the Airway Wall. Journal of Visualized Experiments, 2015, , e52986.	0.3	14

#	Article	IF	CITATIONS
145	Cigarette Smoke and the Induction of Urokinase Plasminogen Activator ReceptorIn Vivo: Selective Contribution of Isoforms to Bronchial Epithelial Phenotype. American Journal of Respiratory Cell and Molecular Biology, 2015, 53, 174-183.	2.9	6
146	Airway bacteria measured by quantitative polymerase chain reaction and culture in patients with stable COPD: relationship with neutrophilic airway inflammation, exacerbation frequency, and lung function. International Journal of COPD, 2015, 10, 1075.	2.3	61
147	Toll-like receptor 9 dependent interferon- $\hat{l}\pm$ release is impaired in severe asthma but is not associated with exacerbation frequency. Immunobiology, 2015, 220, 859-864.	1.9	9
148	Biological clustering supports both "Dutch―and "British―hypotheses of asthma and chronic obstructive pulmonary disease. Journal of Allergy and Clinical Immunology, 2015, 135, 63-72.e10.	2.9	111
149	D prostanoid receptor 2 (chemoattractant receptor–homologous molecule expressed on TH2 cells) protein expression in asthmatic patients and its effects onÂbronchial epithelial cells. Journal of Allergy and Clinical Immunology, 2015, 135, 395-406.e7.	2.9	45
150	Temporal Assessment of Airway Remodeling in Severe Asthma Using Quantitative Computed Tomography. American Journal of Respiratory and Critical Care Medicine, 2015, 191, 107-110.	5.6	9
151	Pharmacological treatment of bacterial infections of the respiratory tract. Anaesthesia and Intensive Care Medicine, 2015, 16, 79-82.	0.2	2
152	Efficacy and safety of tralokinumab in patients with severe uncontrolled asthma: a randomised, double-blind, placebo-controlled, phase 2b trial. Lancet Respiratory Medicine,the, 2015, 3, 692-701.	10.7	318
153	CXCL8 histone H3 acetylation is dysfunctional in airway smooth muscle in asthma: regulation by BET. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 308, L962-L972.	2.9	51
154	Oxidative stress–induced mitochondrial dysfunction drives inflammation and airway smooth muscle remodeling in patients with chronic obstructive pulmonary disease. Journal of Allergy and Clinical Immunology, 2015, 136, 769-780.	2.9	332
155	No evidence for altered intracellular calcium-handling in airway smooth muscle cells from human subjects with asthma. BMC Pulmonary Medicine, 2015, 15, 12.	2.0	7
156	Novel imaging approaches in adult asthma and their clinical potential. Expert Review of Clinical Immunology, 2015, 11, 1147-1162.	3.0	6
157	Unmet needs for the assessment of small airways dysfunction in asthma: introduction to the ATLANTIS study. European Respiratory Journal, 2015, 45, 1534-1538.	6.7	23
158	Oxidation of the alarmin IL-33 regulates ST2-dependent inflammation. Nature Communications, 2015, 6, 8327.	12.8	207
159	Development and Analysis of Patient-Based Complete Conducting Airways Models. PLoS ONE, 2015, 10, e0144105.	2.5	45
160	Effect of levofloxacin on neutrophilic airway inflammation in stable COPD: a randomized, double-blind, placebo-controlled trial. International Journal of COPD, 2014, 9, 179.	2.3	12
161	Systemic and pulmonary inflammation is independent of skeletal muscle changes in patients with chronic obstructive pulmonary disease. International Journal of COPD, 2014, 9, 975.	2.3	12
162	Blood eosinophil guided prednisolone therapy for exacerbations of COPD: a further analysis. European Respiratory Journal, 2014, 44, 789-791.	6.7	141

#	Article	IF	CITATIONS
163	Between-visit variability of small airway obstruction markers in patients with asthma. European Respiratory Journal, 2014, 44, 242-244.	6.7	20
164	Destination Airway: Tracking Granulocytes in Asthma. EBioMedicine, 2014, 1, 105-106.	6.1	1
165	A method for quantitative analysis of regional lung ventilation using deformable image registration of CT and hybrid hyperpolarized gas/1H MRI. Physics in Medicine and Biology, 2014, 59, 7267-7277.	3.0	24
166	As strong as an <scp>OX</scp> or as weak as a kitten?. Clinical and Experimental Allergy, 2014, 44, 6-8.	2.9	0
167	<scp>CCL</scp> 2 release by airway smooth muscle is increased in asthma and promotes fibrocyte migration. Allergy: European Journal of Allergy and Clinical Immunology, 2014, 69, 1189-1197.	5.7	59
168	[<scp><scp>Ca²⁺</scp>]_i oscillations in <scp>ASM</scp>: Relationship with persistent airflow obstruction in asthma. Respirology, 2014, 19, 763-766.</scp>	2.3	8
169	Quantitative computed tomography–derived clusters: Redefining airway remodeling in asthmatic patients. Journal of Allergy and Clinical Immunology, 2014, 133, 729-738.e18.	2.9	108
170	Benralizumab for chronic obstructive pulmonary disease and sputum eosinophilia: a randomised, double-blind, placebo-controlled, phase 2a study. Lancet Respiratory Medicine,the, 2014, 2, 891-901.	10.7	248
171	Aspergillus fumigatus during stable state and exacerbations of COPD. European Respiratory Journal, 2014, 43, 64-71.	6.7	110
172	Asthma Therapy and Its Effect on Airway Remodelling. Drugs, 2014, 74, 1345-1369.	10.9	66
173	COPD exacerbation severity and frequency is associated with impaired macrophage efferocytosis of eosinophils. BMC Pulmonary Medicine, 2014, 14, 112.	2.0	62
174	Lung clearance index in adults with non-cystic fibrosis bronchiectasis. Respiratory Research, 2014, 15, 59.	3.6	39
175	Outcomes after cessation of mepolizumab therapy in severe eosinophilic asthma: AÂ12-month follow-up analysis. Journal of Allergy and Clinical Immunology, 2014, 133, 921-923.	2.9	150
176	Effectiveness of voriconazole in the treatment of Aspergillus fumigatus–associated asthma (EVITA3) Tj ETQq0	0 0 rgBT /0	Overlock 101
177	Reply. Journal of Allergy and Clinical Immunology, 2014, 133, 1777-1778.	2.9	0

178	Computational modeling of the obstructive lung diseases asthma and COPD. Journal of Translational Medicine, 2014, 12, S5.	4.4	44
179	Statistical Cluster Analysis of the British Thoracic Society Severe Refractory Asthma Registry: Clinical Outcomes and Phenotype Stability. PLoS ONE, 2014, 9, e102987.	2.5	94

180Severe asthma: novel advances in the pathogenesis and therapy. Polish Archives of Internal Medicine,
2014, 124, 247-254.0.412

#	Article	IF	CITATIONS
181	Cytokine-Specific Therapy in Asthma. , 2014, , 1491-1502.		Ο
182	Lung Imaging. , 2014, , 1056-1065.		0
183	Origins of increased airway smooth muscle mass in asthma. BMC Medicine, 2013, 11, 145.	5.5	59
184	Sputum mediator profiling and relationship to airway wall geometry imaging in severe asthma. Respiratory Research, 2013, 14, 17.	3.6	18
185	Eosinophils as diagnostic tools in chronic lung disease. Expert Review of Respiratory Medicine, 2013, 7, 33-42.	2.5	47
186	Clinical outcomes and inflammatory biomarkers in current smokers and exsmokers with severe asthma. Journal of Allergy and Clinical Immunology, 2013, 131, 1008-1016.	2.9	125
187	The effects of nociceptin peptide (N/OFQ)–receptor (NOP) system activation in the airways. Peptides, 2013, 39, 36-46.	2.4	12
188	Phenotyping the heterogeneity of chronic obstructive pulmonary disease. Clinical Science, 2013, 124, 371-387.	4.3	46
189	Increased glutaredoxin-1 and decreased protein <i>S</i> -glutathionylation in sputum of asthmatics. European Respiratory Journal, 2013, 41, 469-472.	6.7	34
190	Synthetic Response of Stimulated Respiratory Epithelium. Chest, 2013, 143, 1656-1666.	0.8	4
191	The EvA study: aims and strategy. European Respiratory Journal, 2012, 40, 823-829.	6.7	29
192	Asthmatic airway smooth muscle CXCL10 production: mitogen-activated protein kinase JNK involvement. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2012, 302, L1118-L1127.	2.9	43
193	uPAR regulates bronchial epithelial repair in vitro and is elevated in asthmatic epithelium. Thorax, 2012, 67, 477-487.	5.6	42
194	Airway impedance entropy and exacerbations in severe asthma. European Respiratory Journal, 2012, 40, 1156-1163.	6.7	31
195	Computed tomography scans in severe asthma. Current Opinion in Pulmonary Medicine, 2012, 18, 42-47.	2.6	42
196	The relationship between clinical outcomes and medication adherence in difficult-to-control asthma: Table 1. Thorax, 2012, 67, 751-753.	5.6	259
197	Regulator of C-Protein Signaling–5 Inhibits Bronchial Smooth Muscle Contraction in Severe Asthma. American Journal of Respiratory Cell and Molecular Biology, 2012, 46, 823-832.	2.9	22
198	Mast Cell-Airway Smooth Muscle Crosstalk. Chest, 2012, 142, 76-85.	0.8	58

#	Article	IF	CITATIONS
199	OX40/OX40 Ligand Interactions in T-Cell Regulation and Asthma. Chest, 2012, 141, 494-499.	0.8	86
200	Blood Eosinophils to Direct Corticosteroid Treatment of Exacerbations of Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 2012, 186, 48-55.	5.6	499
201	How to Diagnose and Phenotype Asthma. Clinics in Chest Medicine, 2012, 33, 445-457.	2.1	42
202	Routine processing procedures for isolating filamentous fungi from respiratory sputum samples may underestimate fungal prevalence. Medical Mycology, 2012, 50, 433-438.	0.7	94
203	Abnormal Histone Methylation Is Responsible for Increased Vascular Endothelial Growth Factor 165a Secretion from Airway Smooth Muscle Cells in Asthma. Journal of Immunology, 2012, 189, 819-831.	0.8	52
204	An RGS4-Mediated Phenotypic Switch of Bronchial Smooth Muscle Cells Promotes Fixed Airway Obstruction in Asthma. PLoS ONE, 2012, 7, e28504.	2.5	30
205	Primary Human Airway Epithelial Cell-Dependent Inhibition of Human Lung Mast Cell Degranulation. PLoS ONE, 2012, 7, e43545.	2.5	37
206	Lung damage and airway remodelling in severe asthma. Clinical and Experimental Allergy, 2012, 42, 638-649.	2.9	100
207	Systems medicine and integrated care to combat chronic noncommunicable diseases. Genome Medicine, 2011, 3, 43.	8.2	181
208	Acute Exacerbations of Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 2011, 184, 662-671.	5.6	847
209	Imaging advances in asthma. Expert Opinion on Medical Diagnostics, 2011, 5, 453-465.	1.6	5
210	Pharmacological treatment of bacterial infections of the respiratory tract. Anaesthesia and Intensive Care Medicine, 2011, 12, 522-525.	0.2	2
211	Eosinophils, bronchitis and asthma: Pathogenesis of cough and airflow obstruction. Pulmonary Pharmacology and Therapeutics, 2011, 24, 324-327.	2.6	31
212	Immunopathogenesis of Severe Asthma. Current Pharmaceutical Design, 2011, 17, 667-673.	1.9	9
213	Procalcitonin and C-Reactive Protein in Hospitalized Adult Patients With Community-Acquired Pneumonia or Exacerbation of Asthma or COPD. Chest, 2011, 139, 1410-1418.	0.8	145
214	Procalcitonin vs Clinical and Chest Film Findings to Diagnose Community-Acquired Pneumonia in Patients With Acute Asthma or Acute Exacerbations of Chronic Bronchitis: Response. Chest, 2011, 140, 1668.	0.8	0
215	The Role of CT Scanning in Multidimensional Phenotyping of COPD. Chest, 2011, 140, 634-642.	0.8	96
216	Integrin αvβ5-Mediated TGF-β Activation by Airway Smooth Muscle Cells in Asthma. Journal of Immunology, 2011, 187, 6094-6107.	0.8	124

#	Article	IF	CITATIONS
217	Visual vs Automated Assessment of Emphysema: Response. Chest, 2011, 140, 1385.	0.8	1
218	Interleukinâ€13: prospects for new treatments. Clinical and Experimental Allergy, 2010, 40, 42-49.	2.9	68
219	Expression of the T Helper 17-Associated Cytokines IL-17A and IL-17F in Asthma and COPD. Chest, 2010, 138, 1140-1147.	0.8	331
220	Cough Due to Asthma and Nonasthmatic Eosinophilic Bronchitis. Lung, 2010, 188, 13-17.	3.3	24
221	Expression and activation of the oxytocin receptor in airway smooth muscle cells: Regulation by TNFα and IL-13. Respiratory Research, 2010, 11, 104.	3.6	38
222	Quantitative analysis of high-resolution computed tomography scans in severe asthma subphenotypes. Thorax, 2010, 65, 775-781.	5.6	93
223	Cough Due to Asthma, Cough-Variant Asthma and Non-Asthmatic Eosinophilic Bronchitis. Otolaryngologic Clinics of North America, 2010, 43, 123-130.	1.1	31
224	Eosinophil protein in airway macrophages: AÂnovel biomarker of eosinophilic inflammation in patients with asthma. Journal of Allergy and Clinical Immunology, 2010, 126, 61-69.e3.	2.9	76
225	Ciliary dysfunction and ultrastructural abnormalities are features of severe asthma. Journal of Allergy and Clinical Immunology, 2010, 126, 722-729.e2.	2.9	156
226	IgE Sensitization to <i>Aspergillus fumigatus</i> Is Associated with Reduced Lung Function in Asthma. American Journal of Respiratory and Critical Care Medicine, 2010, 182, 1362-1368.	5.6	222
227	Qualitative Analysis of High-Resolution CT Scans in Severe Asthma. Chest, 2009, 136, 1521-1528.	0.8	190
228	Pivotal Advance: Expansion of small sputum macrophages in CF: failure to express MARCO and mannose receptors. Journal of Leukocyte Biology, 2009, 86, 479-489.	3.3	46
229	Human Airway Smooth Muscle Cells from Asthmatic Individuals Have CXCL8 Hypersecretion Due to Increased NF-I®B p65, C/EBPI², and RNA Polymerase II Binding to the CXCL8 Promoter. Journal of Immunology, 2009, 183, 4682-4692.	0.8	65
230	Fibrocyte localization to the airway smooth muscle is a feature of asthma. Journal of Allergy and Clinical Immunology, 2009, 123, 376-384.	2.9	120
231	Mepolizumab and Exacerbations of Refractory Eosinophilic Asthma. New England Journal of Medicine, 2009, 360, 973-984.	27.0	1,672
232	The utility of the mannitol challenge in the assessment of chronic cough: a pilot study. Cough, 2008, 4, 10.	2.7	26
233	Pre-eclampsia is associated with airway hyperresponsiveness. BJOG: an International Journal of Obstetrics and Gynaecology, 2008, 115, 520-522.	2.3	18
234	Cluster Analysis and Clinical Asthma Phenotypes. American Journal of Respiratory and Critical Care Medicine, 2008, 178, 218-224.	5.6	1,727

#	Article	IF	CITATIONS
235	Targeting TNF-α: A novel therapeutic approach for asthma. Journal of Allergy and Clinical Immunology, 2008, 121, 5-10.	2.9	332
236	Increased sputum and bronchial biopsy IL-13 expression in severe asthma. Journal of Allergy and Clinical Immunology, 2008, 121, 685-691.	2.9	243
237	Human Airway Smooth Muscle Promotes Human Lung Mast Cell Survival, Proliferation, and Constitutive Activation: Cooperative Roles for CADM1, Stem Cell Factor, and IL-6. Journal of Immunology, 2008, 181, 2772-2780.	0.8	100
238	Association Between Neutrophilic Airway Inflammation and Airflow Limitation in Adults With Asthma. Chest, 2007, 132, 1871-1875.	0.8	204
239	Mast cell infiltration of airway smooth muscle in asthma. Respiratory Medicine, 2007, 101, 1045.	2.9	22
240	Bronchoalveolar lavage invariant natural killer T cells are not increased in asthma. Journal of Allergy and Clinical Immunology, 2007, 119, 1274-1276.	2.9	44
241	Adenosine closes the K+ channel KCa3.1 in human lung mast cells and inhibits their migrationvia the adenosine A2A receptor. European Journal of Immunology, 2007, 37, 1653-1662.	2.9	53
242	Airways Disease: Phenotyping Heterogeneity Using Measures of Airway Inflammation. Allergy, Asthma and Clinical Immunology, 2007, 3, 60.	2.0	9
243	Airways Disease: Phenotyping Heterogeneity Using Measures of Airway Inflammation. Allergy, Asthma and Clinical Immunology, 2007, 03, 60.	2.0	1
244	Evidence of a Role of Tumor Necrosis Factor α in Refractory Asthma. New England Journal of Medicine, 2006, 354, 697-708.	27.0	783
245	Cooperative molecular and cellular networks regulate Tollâ€like receptorâ€dependent inflammatory responses. FASEB Journal, 2006, 20, 2153-2155.	0.5	76
246	Chronic Cough Due to Nonasthmatic Eosinophilic Bronchitis. Chest, 2006, 129, 116S-121S.	0.8	134
247	Chemokine Concentrations and Mast Cell Chemotactic Activity in BAL Fluid in Patients With Eosinophilic Bronchitis and Asthma, and in Normal Control Subjects. Chest, 2006, 130, 371-378.	0.8	27
248	Sputum Induction in Asthma. Chest, 2006, 129, 503-504.	0.8	13
249	Clinical Applications of Induced Sputum. Chest, 2006, 129, 1344-1348.	0.8	118
250	Clinical Applications of Induced Sputum. Chest, 2006, 130, 1626-1627.	0.8	2
251	An Empiric Integrative Approach to the Management of Cough. Chest, 2006, 129, 222S-231S.	0.8	149
252	Diagnosis and Management of Cough Executive Summary. Chest, 2006, 129, 1S-23S.	0.8	677

#	Article	IF	CITATIONS
253	Airway Smooth Muscle and Mast Cell–derived CC Chemokine Ligand 19 Mediate Airway Smooth Muscle Migration in Asthma. American Journal of Respiratory and Critical Care Medicine, 2006, 174, 1179-1188.	5.6	134
254	Eosinophilic airway inflammation in COPD. International Journal of COPD, 2006, 1, 39-47.	2.3	128
255	The re-emergence of the mast cell as a pivotal cell in asthma pathogenesis. Current Allergy and Asthma Reports, 2005, 5, 130-135.	5.3	27
256	Sputum eosinophilia and the short term response to inhaled mometasone in chronic obstructive pulmonary disease. Thorax, 2005, 60, 193-198.	5.6	306
257	Differential expression of CCR3 and CXCR3 by human lung and bone marrow-derived mast cells: implications for tissue mast cell migration. Journal of Leukocyte Biology, 2005, 77, 759-766.	3.3	84
258	The CXCL10/CXCR3 Axis Mediates Human Lung Mast Cell Migration to Asthmatic Airway Smooth Muscle. American Journal of Respiratory and Critical Care Medicine, 2005, 171, 1103-1108.	5.6	264
259	Biomarkers Predicting Response to Corticosteroid Therapy in Asthma. Treatments in Respiratory Medicine, 2005, 4, 309-316.	1.4	53
260	Induced Sputum Inflammatory Mediator Concentrations in Chronic Cough. American Journal of Respiratory and Critical Care Medicine, 2004, 169, 15-19.	5.6	173
261	Sputum and bronchial submucosal IL-13 expression in asthma and eosinophilic bronchitis. Journal of Allergy and Clinical Immunology, 2004, 114, 1106-1109.	2.9	151
262	Idiopathic chronic cough and organ-specific autoimmune diseases: a case–control study. Respiratory Medicine, 2004, 98, 242-246.	2.9	56
263	Eosinophils in Asthma and Airway Hyperresponsiveness. American Journal of Respiratory and Critical Care Medicine, 2004, 169, 131-133.	5.6	3
264	Eosinophilic Bronchitis. Treatments in Respiratory Medicine, 2003, 2, 169-173.	1.2	33
265	Antiinflammatory Effects of the Phosphodiesterase-4 Inhibitor Cilomilast (Ariflo) in Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 2003, 168, 976-982.	5.6	207
266	A Comparison of the Validity of Different Diagnostic Tests in Adults With Asthma. Chest, 2002, 121, 1051-1057.	0.8	169
267	Clinical, Radiologic, and Induced Sputum Features of Chronic Obstructive Pulmonary Disease in Nonsmokers. American Journal of Respiratory and Critical Care Medicine, 2002, 166, 1078-1083.	5.6	148
268	TH2 cytokine expression in bronchoalveolar lavage fluid T lymphocytes and bronchial submucosa is a feature of asthma and eosinophilic bronchitis. Journal of Allergy and Clinical Immunology, 2002, 110, 899-905.	2.9	207
269	Asthma exacerbations and sputum eosinophil counts: a randomised controlled trial. Lancet, The, 2002, 360, 1715-1721.	13.7	1,598
270	Mast-Cell Infiltration of Airway Smooth Muscle in Asthma. New England Journal of Medicine, 2002, 346, 1699-1705.	27.0	1,147

#	Article	IF	CITATIONS
271	Research pointers: Peak expiratory flow sequence in acute exacerbations of asthma. BMJ: British Medical Journal, 2001, 322, 1281-1281.	2.3	10
272	CCR7 Expression and Memory T Cell Diversity in Humans. Journal of Immunology, 2001, 166, 877-884.	0.8	304
273	Expression of Chemokine Receptors by Lung T Cells from Normal and Asthmatic Subjects. Journal of Immunology, 2001, 166, 2842-2848.	0.8	163
274	Sputum eosinophilia and short-term response to prednisolone in chronic obstructive pulmonary disease: a randomised controlled trial. Lancet, The, 2000, 356, 1480-1485.	13.7	514