Stephen Maren

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6865855/publications.pdf Version: 2024-02-01

STEDHEN MADEN

#	Article	IF	CITATIONS
1	Neurobiology of Pavlovian Fear Conditioning. Annual Review of Neuroscience, 2001, 24, 897-931.	10.7	1,513
2	Neuronal signalling of fear memory. Nature Reviews Neuroscience, 2004, 5, 844-852.	10.2	1,266
3	The contextual brain: implications for fear conditioning, extinction and psychopathology. Nature Reviews Neuroscience, 2013, 14, 417-428.	10.2	1,262
4	Neurotoxic lesions of the dorsal hippocampus and Pavlovian fear conditioning in rats. Behavioural Brain Research, 1997, 88, 261-274.	2.2	669
5	Contextual and Temporal Modulation of Extinction: Behavioral and Biological Mechanisms. Biological Psychiatry, 2006, 60, 352-360.	1.3	597
6	Temporally Graded Retrograde Amnesia of Contextual Fear after Hippocampal Damage in Rats: Within-Subjects Examination. Journal of Neuroscience, 1999, 19, 1106-1114.	3.6	572
7	Synaptic plasticity in the basolateral amygdala induced by hippocampal formation stimulation in vivo. Journal of Neuroscience, 1995, 15, 7548-7564.	3.6	481
8	The Role of the Medial Prefrontal Cortex in the Conditioning and Extinction of Fear. Frontiers in Behavioral Neuroscience, 2015, 9, 298.	2.0	408
9	Sex differences in hippocampal long-term potentiation (LTP) and Pavlovian fear conditioning in rats: positive correlation between LTP and contextual learning. Brain Research, 1994, 661, 25-34.	2.2	398
10	Hippocampal Inactivation Disrupts Contextual Retrieval of Fear Memory after Extinction. Journal of Neuroscience, 2001, 21, 1720-1726.	3.6	393
11	Long-term potentiation in the amygdala: a mechanism for emotional learning and memory. Trends in Neurosciences, 1999, 22, 561-567.	8.6	382
12	Contextual and Auditory Fear Conditioning are Mediated by the Lateral, Basal, and Central Amygdaloid Nuclei in Rats. Learning and Memory, 2001, 8, 148-155.	1.3	372
13	Neural and cellular mechanisms of fear and extinction memory formation. Neuroscience and Biobehavioral Reviews, 2012, 36, 1773-1802.	6.1	365
14	The Amygdala and Fear Conditioning: Has the Nut Been Cracked?. Neuron, 1996, 16, 237-240.	8.1	360
15	N-methyl-D-aspartate receptors in the basolateral amygdala are required for both acquisition and expression of conditional fear in rats Behavioral Neuroscience, 1996, 110, 1365-1374.	1.2	352
16	Hippocampal Inactivation Disrupts the Acquisition and Contextual Encoding of Fear Extinction. Journal of Neuroscience, 2005, 25, 8978-8987.	3.6	345
17	Electrolytic Lesions of the Fimbria/Fornix, Dorsal Hippocampus, or Entorhinal Cortex Produce Anterograde Deficits in Contextual Fear Conditioning in Rats. Neurobiology of Learning and Memory, 1997, 67, 142-149.	1.9	296
18	Synaptic Mechanisms of Associative Memory in the Amygdala. Neuron, 2005, 47, 783-786.	8.1	292

#	Article	IF	CITATIONS
19	Stress and Fear Extinction. Neuropsychopharmacology, 2016, 41, 58-79.	5.4	292
20	Hippocampal and Prefrontal Projections to the Basal Amygdala Mediate Contextual Regulation of Fear after Extinction. Journal of Neuroscience, 2011, 31, 17269-17277.	3.6	270
21	Retrograde abolition of conditional fear after excitotoxic lesions in the basolateral amygdala of rats: Absence of a temporal gradient Behavioral Neuroscience, 1996, 110, 718-726.	1.2	263
22	Seeking a Spotless Mind: Extinction, Deconsolidation, and Erasure of Fear Memory. Neuron, 2011, 70, 830-845.	8.1	260
23	Hippocampal involvement in contextual modulation of fear extinction. Hippocampus, 2007, 17, 749-758.	1.9	248
24	Neurotoxic Basolateral Amygdala Lesions Impair Learning and Memory But Not the Performance of Conditional Fear in Rats. Journal of Neuroscience, 1999, 19, 8696-8703.	3.6	237
25	Prefrontal-Hippocampal Interactions in Memory and Emotion. Frontiers in Systems Neuroscience, 2015, 9, 170.	2.5	231
26	Hippocampus and Pavlovian Fear Conditioning in Rats: Muscimol Infusions Into the Ventral, but Not Dorsal, Hippocampus Impair the Acquisition of Conditional Freezing to an Auditory Conditional Stimulus Behavioral Neuroscience, 2004, 118, 97-110.	1.2	230
27	Distinct Regions of the Periaqueductal Gray Are Involved in the Acquisition and Expression of Defensive Responses. Journal of Neuroscience, 1998, 18, 3426-3432.	3.6	230
28	PKMζ Maintains Spatial, Instrumental, and Classically Conditioned Long-Term Memories. PLoS Biology, 2008, 6, e318.	5.6	228
29	Reciprocal patterns of c-Fos expression in the medial prefrontal cortex and amygdala after extinction and renewal of conditioned fear. Learning and Memory, 2009, 16, 486-493.	1.3	224
30	Properties and Mechanisms of Long-Term Synaptic Plasticity in the Mammalian Brain: Relationships to Learning and Memory. Neurobiology of Learning and Memory, 1995, 63, 1-18.	1.9	223
31	The hippocampus and contextual memory retrieval in Pavlovian conditioning. Behavioural Brain Research, 2000, 110, 97-108.	2.2	222
32	Pavlovian fear conditioning as a behavioral assay for hippocampus and amygdala function: cautions and caveats. European Journal of Neuroscience, 2008, 28, 1661-1666.	2.6	214
33	Estrogen modulates sexually dimorphic contextual fear conditioning and hippocampal long-term potentiation (LTP) in rats11Published on the World Wide Web on 1 December 2000 Brain Research, 2001, 888, 356-365.	2.2	202
34	Muscimol Inactivation of the Dorsal Hippocampus Impairs Contextual Retrieval of Fear Memory. Journal of Neuroscience, 1999, 19, 9054-9062.	3.6	186
35	Immediate-early gene expression in the amygdala following footshock stress and contextual fear conditioning. Brain Research, 1998, 796, 132-142.	2.2	185
36	Single prolonged stress disrupts retention of extinguished fear in rats. Learning and Memory, 2012, 19, 43-49.	1.3	181

#	Article	IF	CITATIONS
37	Ventral hippocampal muscimol disrupts context-specific fear memory retrieval after extinction in rats. Hippocampus, 2006, 16, 174-182.	1.9	180
38	Overtraining Does Not Mitigate Contextual Fear Conditioning Deficits Produced by Neurotoxic Lesions of the Basolateral Amygdala. Journal of Neuroscience, 1998, 18, 3088-3097.	3.6	174
39	Differential roles for hippocampal areas CA1 and CA3 in the contextual encoding and retrieval of extinguished fear. Learning and Memory, 2008, 15, 244-251.	1.3	171
40	The role of contextual versus discrete drug-associated cues in promoting the induction of psychomotor sensitization to intravenous amphetamine. Behavioural Brain Research, 2000, 116, 1-22.	2.2	168
41	Recent fear is resistant to extinction. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 18020-18025.	7.1	167
42	Hippocampus-driven feed-forward inhibition of the prefrontal cortex mediates relapse of extinguished fear. Nature Neuroscience, 2018, 21, 384-392.	14.8	165
43	Behavioral and neurobiological mechanisms of pavlovian and instrumental extinction learning. Physiological Reviews, 2021, 101, 611-681.	28.8	163
44	Functional anatomy of neural circuits regulating fear and extinction. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 17093-17098.	7.1	162
45	The Amygdala Is Essential for the Development of Neuronal Plasticity in the Medial Geniculate Nucleus during Auditory Fear Conditioning in Rats. Journal of Neuroscience, 2001, 21, RC135-RC135.	3.6	159
46	Factors Regulating the Effects of Hippocampal Inactivation on Renewal of Conditional Fear After Extinction. Learning and Memory, 2004, 11, 598-603.	1.3	159
47	Electrolytic lesions of the dorsal hippocampus disrupt renewal of conditional fear after extinction. Learning and Memory, 2005, 12, 270-276.	1.3	158
48	Context-Dependent Neuronal Activity in the Lateral Amygdala Represents Fear Memories after Extinction. Journal of Neuroscience, 2003, 23, 8410-8416.	3.6	156
49	Aversive Stimuli Differentially Modulate Real-Time Dopamine Transmission Dynamics within the Nucleus Accumbens Core and Shell. Journal of Neuroscience, 2012, 32, 15779-15790.	3.6	152
50	Postsynaptic factors in the expression of long-term potentiation (LTP): increased glutamate receptor binding following LTP induction in vivo Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 9654-9658.	7.1	151
51	Selective enhancement of emotional, but not motor, learning in monoamine oxidase A-deficient mice. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 5929-5933.	7.1	146
52	Social modulation of learning in rats. Learning and Memory, 2010, 17, 35-42.	1.3	141
53	Retrograde abolition of conditional fear after excitotoxic lesions in the basolateral amygdala of rats: Absence of a temporal gradient Behavioral Neuroscience, 1996, 110, 718-726.	1.2	141
54	Noradrenergic Modulation of Fear Conditioning and Extinction. Frontiers in Behavioral Neuroscience, 2018, 12, 43.	2.0	137

#	Article	IF	CITATIONS
55	Scopolamine and Pavlovian Fear Conditioning in Rats Dose-Effect Analysis. Neuropsychopharmacology, 1999, 21, 731-744.	5.4	135
56	Can fear extinction be enhanced? A review of pharmacological and behavioral findings. Brain Research Bulletin, 2014, 105, 46-60.	3.0	134
57	Characterization of pharmacoresistance to benzodiazepines in the rat Li-pilocarpine model of status epilepticus. Epilepsy Research, 2002, 50, 301-312.	1.6	133
58	Building and Burying Fear Memories in the Brain. Neuroscientist, 2005, 11, 89-99.	3.5	133
59	Neurotoxic or electrolytic lesions of the ventral subiculum produce deficits in the acquisition and expression of Pavlovian fear conditioning in rats Behavioral Neuroscience, 1999, 113, 283-290.	1.2	132
60	Long-term potentiation is associated with increased [3H]AMPA binding in rat hippocampus. Brain Research, 1992, 573, 228-234.	2.2	131
61	The Amygdala, Synaptic Plasticity, and Fear Memory. Annals of the New York Academy of Sciences, 2003, 985, 106-113.	3.8	131
62	Auditory fear conditioning increases CS-elicited spike firing in lateral amygdala neurons even after extensive overtraining. European Journal of Neuroscience, 2000, 12, 4047-4054.	2.6	121
63	Overexpression of hAPPswe Impairs Rewarded Alternation and Contextual Fear Conditioning in a Transgenic Mouse Model of Alzheimer's Disease. Learning and Memory, 2002, 9, 243-252.	1.3	121
64	Auditory-Evoked Spike Firing in the Lateral Amygdala and Pavlovian Fear Conditioning. Neuron, 2003, 40, 1013-1022.	8.1	121
65	Synaptic transmission and plasticity in the amygdala. Molecular Neurobiology, 1996, 13, 1-22.	4.0	118
66	Hippocampal regulation of context-dependent neuronal activity in the lateral amygdala. Learning and Memory, 2007, 14, 318-324.	1.3	113
67	Fear renewal preferentially activates ventral hippocampal neurons projecting to both amygdala and prefrontal cortex in rats. Scientific Reports, 2015, 5, 8388.	3.3	109
68	The central nucleus of the amygdala is essential for acquiring and expressing conditional fear after overtraining. Learning and Memory, 2007, 14, 634-644.	1.3	106
69	Role of the bed nucleus of the stria terminalis in aversive learning and memory. Learning and Memory, 2017, 24, 480-491.	1.3	106
70	Pretraining NMDA receptor blockade in the basolateral complex, but not the central nucleus, of the amygdala prevents savings of the conditional fear Behavioral Neuroscience, 2003, 117, 738-750.	1.2	105
71	The startled seahorse: is the hippocampus necessary for contextual fear conditioning?. Trends in Cognitive Sciences, 1998, 2, 39-42.	7.8	104
72	Revisiting propranolol and PTSD: Memory erasure or extinction enhancement?. Neurobiology of Learning and Memory, 2016, 130, 26-33.	1.9	104

#	Article	IF	CITATIONS
73	NMDA receptor antagonism in the basolateral but not central amygdala blocks the extinction of Pavlovian fear conditioning in rats. European Journal of Neuroscience, 2010, 31, 1664-1670.	2.6	102
74	Parallel augmentation of hippocampal long-term potentiation, theta rhythm, and contextual fear conditioning in water-deprived rats Behavioral Neuroscience, 1994, 108, 44-56.	1.2	97
75	Basolateral amygdaloid multi-unit neuronal correlates of discriminative avoidance learning in rabbits. Brain Research, 1991, 549, 311-316.	2.2	96
76	Single-Unit Activity in the Medial Prefrontal Cortex during Immediate and Delayed Extinction of Fear in Rats. PLoS ONE, 2010, 5, e11971.	2.5	96
77	Long-term potentiation as a substrate for memory: Evidence from studies of amygdaloid plasticity and Pavlovian fear conditioning. Hippocampus, 2002, 12, 592-599.	1.9	94
78	Protein synthesis in the amygdala, but not the auditory thalamus, is required for consolidation of Pavlovian fear conditioning in rats. European Journal of Neuroscience, 2003, 18, 3080-3088.	2.6	91
79	NMDA receptors are essential for the acquisition, but not expression, of conditional fear and associative spike firing in the lateral amygdala. European Journal of Neuroscience, 2004, 20, 537-548.	2.6	91
80	Scopolamine Selectively Disrupts the Acquisition of Contextual Fear Conditioning in Rats. Neurobiology of Learning and Memory, 1995, 64, 191-194.	1.9	90
81	Synaptic encoding of fear memories in the amygdala. Current Opinion in Neurobiology, 2019, 54, 54-59.	4.2	90
82	Changes in anxiety-related behaviors and hypothalamic–pituitary–adrenal activity in mice lacking the 5-HT-3A receptor. Physiology and Behavior, 2004, 81, 545-555.	2.1	88
83	Noradrenergic blockade stabilizes prefrontal activity and enables fear extinction under stress. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E3729-37.	7.1	88
84	Prefrontal projections to the thalamic nucleus reuniens mediate fear extinction. Nature Communications, 2018, 9, 4527.	12.8	84
85	Nature and causes of the immediate extinction deficit: A brief review. Neurobiology of Learning and Memory, 2014, 113, 19-24.	1.9	78
86	Bed nucleus of the stria terminalis regulates fear to unpredictable threat signals. ELife, 2019, 8, .	6.0	78
87	A role for amygdaloid PKA and PKC in the acquisition of long-term conditional fear memories in rats. Behavioural Brain Research, 2000, 114, 145-152.	2.2	77
88	Animal Models of Fear Relapse. ILAR Journal, 2014, 55, 246-258.	1.8	73
89	Nucleus Reuniens Is Required for Encoding and Retrieving Precise, Hippocampal-Dependent Contextual Fear Memories in Rats. Journal of Neuroscience, 2018, 38, 9925-9933.	3.6	69
90	Electrolytic lesions of the medial prefrontal cortex do not interfere with long-term memory of extinction of conditioned fear. Learning and Memory, 2006, 13, 14-17.	1.3	67

#	Article	IF	CITATIONS
91	Individual variation in the propensity to attribute incentive salience to an appetitive cue predicts the propensity to attribute motivational salience to an aversive cue. Behavioural Brain Research, 2011, 220, 238-243.	2.2	65
92	Locus Coeruleus Norepinephrine Drives Stress-Induced Increases in Basolateral Amygdala Firing and Impairs Extinction Learning. Journal of Neuroscience, 2020, 40, 907-916.	3.6	61
93	The bed nucleus of the stria terminalis is required for the expression of contextual but not auditory freezing in rats with basolateral amygdala lesions. Neurobiology of Learning and Memory, 2011, 95, 199-205.	1.9	60
94	Common neurocircuitry mediating drug and fear relapse in preclinical models. Psychopharmacology, 2019, 236, 415-437.	3.1	60
95	Water deprivation enhances fear conditioning to contextual, but not discrete, conditional stimuli in rats Behavioral Neuroscience, 1994, 108, 645-649.	1.2	58
96	Making translation work: Harmonizing cross-species methodology in the behavioural neuroscience of Pavlovian fear conditioning. Neuroscience and Biobehavioral Reviews, 2019, 107, 329-345.	6.1	58
97	Is There Savings for Pavlovian Fear Conditioning after Neurotoxic Basolateral Amygdala Lesions in Rats?. Neurobiology of Learning and Memory, 2001, 76, 268-283.	1.9	57
98	Renewal of extinguished fear activates ventral hippocampal neurons projecting to the prelimbic and infralimbic cortices in rats. Neurobiology of Learning and Memory, 2016, 134, 38-43.	1.9	56
99	Flexibility in the face of fear: hippocampal–prefrontal regulation of fear and avoidance. Current Opinion in Behavioral Sciences, 2018, 19, 44-49.	3.9	55
100	Early extinction after fear conditioning yields a context-independent and short-term suppression of conditional freezing in rats. Learning and Memory, 2009, 16, 62-68.	1.3	54
101	Medial prefrontal cortex activation facilitates re-extinction of fear in rats. Learning and Memory, 2011, 18, 221-225.	1.3	51
102	Strain difference in the effect of infralimbic cortex lesions on fear extinction in rats Behavioral Neuroscience, 2010, 124, 391-397.	1.2	49
103	Fear Extinction in Rodents. Current Protocols in Neuroscience, 2009, 47, Unit8.23.	2.6	46
104	Testicular hormones do not regulate sexually dimorphic Pavlovian fear conditioning or perforant-path long-term potentiation in adult male rats. Behavioural Brain Research, 1998, 92, 1-9.	2.2	45
105	Role of the Bed Nucleus of the Stria Terminalis in PTSD: Insights From Preclinical Models. Frontiers in Behavioral Neuroscience, 2019, 13, 68.	2.0	45
106	Out with the old and in with the new: Synaptic mechanisms of extinction in the amygdala. Brain Research, 2015, 1621, 231-238.	2.2	44
107	What the Amygdala Does and Doesn't Do in Aversive Learning. Learning and Memory, 2003, 10, 306-308.	1.3	43
108	β-Adrenoceptor Blockade in the Basolateral Amygdala, But Not the Medial Prefrontal Cortex, Rescues the Immediate Extinction Deficit. Neuropsychopharmacology, 2017, 42, 2537-2544.	5.4	42

#	Article	IF	CITATIONS
109	Sign-tracking to an appetitive cue predicts incubation of conditioned fear in rats. Behavioural Brain Research, 2015, 276, 59-66.	2.2	41
110	Effects of 7-nitroindazole, a neuronal nitric oxide synthase (nNOS) inhibitor, on locomotor activity and contextual fear conditioning in rats. Brain Research, 1998, 804, 155-158.	2.2	40
111	Ensemble coding of context-dependent fear memory in the amygdala. Frontiers in Behavioral Neuroscience, 2013, 7, 199.	2.0	40
112	Nuclear disconnection within the amygdala reveals a direct pathway to fear. Learning and Memory, 2009, 16, 766-768.	1.3	39
113	Nucleus reuniens mediates the extinction of contextual fear conditioning. Behavioural Brain Research, 2019, 374, 112114.	2.2	39
114	A negative correlation between the induction of long-term potentiation and activation of immediate early genes. Molecular Brain Research, 1991, 11, 89-91.	2.3	36
115	Locus coeruleus toggles reciprocal prefrontal firing to reinstate fear. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 8570-8575.	7.1	36
116	Dynamic amino acid increases in the basolateral amygdala during acquisition and expression of conditioned fear. European Journal of Neuroscience, 2006, 23, 3391-3398.	2.6	35
117	The Threatened Brain. Science, 2007, 317, 1043-1044.	12.6	34
118	Fear of the unexpected: Hippocampus mediates novelty-induced return of extinguished fear in rats. Neurobiology of Learning and Memory, 2014, 108, 88-95.	1.9	34
119	Enhancement of striatum-dependent memory by conditioned fear is mediated by beta-adrenergic receptors in the basolateral amygdala. Neurobiology of Stress, 2016, 3, 74-82.	4.0	31
120	Threat imminence dictates the role of the bed nucleus of the stria terminalis in contextual fear. Neurobiology of Learning and Memory, 2020, 167, 107116.	1.9	31
121	Sexually dimorphic perforant path long-term potentiation (LTP) in urethane-anesthetized rats. Neuroscience Letters, 1995, 196, 177-180.	2.1	30
122	Lesions of the entorhinal cortex or fornix disrupt the context-dependence of fear extinction in rats. Behavioural Brain Research, 2008, 194, 201-206.	2.2	30
123	Fear Expression Suppresses Medial Prefrontal Cortical Firing in Rats. PLoS ONE, 2016, 11, e0165256.	2.5	30
124	Behavioral and brain mechanisms mediating conditioned flight behavior in rats. Scientific Reports, 2021, 11, 8215.	3.3	30
125	Reversible Inactivation of the Bed Nucleus of the Stria Terminalis Prevents Reinstatement But Not Renewal of Extinguished Fear. ENeuro, 2015, 2, ENEURO.0037-15.2015.	1.9	29
126	Covert capture and attenuation of a hippocampus-dependent fear memory. Nature Neuroscience, 2021, 24, 677-684.	14.8	29

#	Article	IF	CITATIONS
127	Allopregnanolone in the bed nucleus of the stria terminalis modulates contextual fear in rats. Frontiers in Behavioral Neuroscience, 2015, 9, 205.	2.0	28
128	Parallel augmentation of hippocampal long-term potentiation, theta rhythm, and contextual fear conditioning in water-deprived rats Behavioral Neuroscience, 1994, 108, 44-56.	1.2	26
129	Effects of the novel NMDA receptor antagonist, CGP 39551, on field potentials and the induction and expression of LTP in the dentate gyrus in vivo. Synapse, 1992, 11, 221-228.	1.2	25
130	Selectively Bred Rats Provide a Unique Model of Vulnerability to PTSD-Like Behavior and Respond Differentially to FGF2 Augmentation Early in Life. Neuropsychopharmacology, 2017, 42, 1706-1714.	5.4	23
131	Associative structure of fear memory after basolateral amygdala lesions in rats Behavioral Neuroscience, 2008, 122, 1284-1294.	1.2	21
132	Parsing Reward and Aversion in the Amygdala. Neuron, 2016, 90, 209-211.	8.1	21
133	Reply to Vazdarjanova. Trends in Neurosciences, 2000, 23, 345-346.	8.6	20
134	Glutamate receptors in the medial geniculate nucleus are necessary for expression and extinction of conditioned fear in rats. Neurobiology of Learning and Memory, 2009, 92, 581-589.	1.9	19
135	Convergent Coding of Recent and Remote Fear Memory in the Basolateral Amygdala. Biological Psychiatry, 2022, 91, 832-840.	1.3	19
136	Extinction after fear memory reactivation fails to eliminate renewal in rats. Neurobiology of Learning and Memory, 2017, 142, 41-47.	1.9	18
137	Allopregnanolone induces state-dependent fear via the bed nucleus of the stria terminalis. Hormones and Behavior, 2017, 89, 137-144.	2.1	17
138	Differential effects of ketamine and MK-801 on the induction of long-term potentiation. NeuroReport, 1991, 2, 239-242.	1.2	16
139	Hitting Ras where it counts: Ras antagonism in the basolateral amygdala inhibits long-term fear memory. European Journal of Neuroscience, 2006, 23, 196-204.	2.6	16
140	Unrelenting Fear Under Stress: Neural Circuits and Mechanisms for the Immediate Extinction Deficit. Frontiers in Systems Neuroscience, 2022, 16, 888461.	2.5	15
141	An Acid-Sensing Channel Sows Fear and Panic. Cell, 2009, 139, 867-869.	28.9	13
142	Estrous cycle contributes to state-dependent contextual fear in female rats. Psychoneuroendocrinology, 2022, 141, 105776.	2.7	13
143	Individual differences in emergence neophobia predict magnitude of perforant-path long-term potentiation (LTP) and plasma corticosterone levels in rats. Cognitive, Affective and Behavioral Neuroscience, 1993, 21, 2-10.	1.3	13
144	Sex differences in the immediate extinction deficit and renewal of extinguished fear in rats. PLoS ONE, 2022, 17, e0264797.	2.5	13

#	Article	IF	CITATIONS
145	Enhancement of auditory fear conditioning after housing in a complex environment is attenuated by prior treatment with amphetamine. Learning and Memory, 2005, 12, 553-556.	1.3	12
146	Neural Oscillations in Aversively Motivated Behavior. Frontiers in Behavioral Neuroscience, 0, 16, .	2.0	12
147	Ventral hippocampus mediates the context-dependence of two-way signaled avoidance in male rats. Neurobiology of Learning and Memory, 2021, 183, 107458.	1.9	11
148	The effects of hippocampal lesions on two neotic choice tasks. Cognitive, Affective and Behavioral Neuroscience, 1993, 21, 193-202.	1.3	10
149	The amygdala is not necessary for unconditioned stimulus inflation after Pavlovian fear conditioning in rats. Learning and Memory, 2009, 16, 645-654.	1.3	9
150	NMDA receptors in the CeA and BNST differentially regulate fear conditioning to predictable and unpredictable threats. Neurobiology of Learning and Memory, 2020, 174, 107281.	1.9	9
151	Emergence neophobia correlates with hippocampal and cortical glutamate receptor binding in rats. Behavioral and Neural Biology, 1994, 62, 68-72.	2.2	8
152	Appetitive motivational states differ in their ability to augment aversive fear conditioning in rats (Rattus norvegicus) Journal of Experimental Psychology, 1998, 24, 369-373.	1.7	8
153	Synapse-Specific Encoding of Fear Memory in the Amygdala. Neuron, 2017, 95, 988-990.	8.1	8
154	Event boundaries do not cause the immediate extinction deficit after Pavlovian fear conditioning in rats. Scientific Reports, 2019, 9, 9459.	3.3	8
155	Neural Circuits for Fear Relapse. , 2018, , 182-202.		7
156	Allergy Immunotherapy as an Early Intervention in Patients with Child-Onset Atopic Asthma. International Archives of Allergy and Immunology, 2006, 139, 9-15.	2.1	6
157	Relapse of extinguished fear after exposure to a dangerous context is mitigated by testing in a safe context. Learning and Memory, 2015, 22, 170-178.	1.3	6
158	Putting the Brakes on Fear. Neuron, 2013, 80, 837-838.	8.1	3
159	Central and basolateral amygdala neurons crash the aversive conditioning party: Theoretical comment on Rorick-Kehn and Steinmetz (2005) Behavioral Neuroscience, 2005, 119, 1406-1410.	1.2	2
160	Sex, Steroids, and Fear. Biological Psychiatry, 2015, 78, 152-153.	1.3	2
161	Emotional Learning: Animals â~†. , 2017, , 391-410.		2
162	Arousing the LTP and learning debate. Behavioral and Brain Sciences, 1997, 20, 622-623.	0.7	1

10

#	Article	IF	CITATIONS
163	Chandelier Cells Illuminate Inhibitory Control of Prefrontal–Amygdala Outputs. Trends in Neurosciences, 2017, 40, 640-642.	8.6	1
164	QoS support on fourth generation networks. IEEE Latin America Transactions, 2006, 4, 14-20.	1.6	0
165	Amygdala: Contributions to Fear. , 2009, , 335-340.		0
166	COMMENTARY: Breaking down fear memory (Commentary on Meins <i>etÂal</i> .). European Journal of Neuroscience, 2010, 31, 2032-2032.	2.6	0
167	S4. Influence of Δ9-Tetrahydrocannabinol (THC) on Fear Extinction Learning and Spontaneous Recovery. Biological Psychiatry, 2018, 83, S348.	1.3	0