
## Bette L Willis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6865310/publications.pdf Version: 2024-02-01



RETTE I MUUS

| #  | Article                                                                                                                                                               | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Global warming and recurrent mass bleaching of corals. Nature, 2017, 543, 373-377.                                                                                    | 27.8 | 2,363     |
| 2  | Phase Shifts, Herbivory, and the Resilience of Coral Reefs to Climate Change. Current Biology, 2007, 17, 360-365.                                                     | 3.9  | 1,239     |
| 3  | Thermal Stress and Coral Cover as Drivers of Coral Disease Outbreaks. PLoS Biology, 2007, 5, e124.                                                                    | 5.6  | 694       |
| 4  | Synchronous spawnings of 105 scleractinian coral species on the Great Barrier Reef. Marine Biology, 1986, 90, 379-394.                                                | 1.5  | 622       |
| 5  | Mass Spawning in Tropical Reef Corals. Science, 1984, 223, 1186-1189.                                                                                                 | 12.6 | 610       |
| 6  | Systematic and Biogeographical Patterns in the Reproductive Biology of Scleractinian Corals. Annual Review of Ecology, Evolution, and Systematics, 2009, 40, 551-571. | 8.3  | 590       |
| 7  | Plastic waste associated with disease on coral reefs. Science, 2018, 359, 460-462.                                                                                    | 12.6 | 540       |
| 8  | Flexibility in Algal Endosymbioses Shapes Growth in Reef Corals. Science, 2004, 304, 1492-1494.                                                                       | 12.6 | 530       |
| 9  | Climate Change Influences on Marine Infectious Diseases: Implications for Management and Society.<br>Annual Review of Marine Science, 2014, 6, 249-277.               | 11.6 | 484       |
| 10 | Larval retention and connectivity among populations of corals and reef fishes: history, advances and challenges. Coral Reefs, 2009, 28, 307-325.                      | 2.2  | 460       |
| 11 | Coral-Associated Bacteria and Their Role in the Biogeochemical Cycling of Sulfur. Applied and Environmental Microbiology, 2009, 75, 3492-3501.                        | 3.1  | 395       |
| 12 | Coral thermal tolerance shaped by local adaptation of photosymbionts. Nature Climate Change, 2012, 2, 116-120.                                                        | 18.8 | 393       |
| 13 | Coral Disease, Environmental Drivers, and the Balance Between Coral and Microbial Associates.<br>Oceanography, 2007, 20, 172-195.                                     | 1.0  | 392       |
| 14 | Microbial Ecology of Four Coral Atolls in the Northern Line Islands. PLoS ONE, 2008, 3, e1584.                                                                        | 2.5  | 383       |
| 15 | SUPPLY-SIDE ECOLOGY WORKS BOTH WAYS: THE LINK BETWEEN BENTHIC ADULTS, FECUNDITY, AND LARVAL RECRUITS. Ecology, 2000, 81, 2241-2249.                                   | 3.2  | 347       |
| 16 | Rapid adaptive responses to climate change in corals. Nature Climate Change, 2017, 7, 627-636.                                                                        | 18.8 | 327       |
| 17 | Patterns of recruitment and abundance of corals along the Great Barrier Reef. Nature, 1999, 397, 59-63.                                                               | 27.8 | 321       |
| 18 | Effects of algal turfs and sediment on coral settlement. Marine Pollution Bulletin, 2005, 51, 408-414.                                                                | 5.0  | 318       |

| #  | Article                                                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Species–specific interactions between algal endosymbionts and coral hosts define their bleaching response to heat and light stress. Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 2273-2282.                                                | 2.6  | 296       |
| 20 | Corals Form Characteristic Associations with Symbiotic Nitrogen-Fixing Bacteria. Applied and Environmental Microbiology, 2012, 78, 3136-3144.                                                                                                                     | 3.1  | 275       |
| 21 | Coral Disease on the Great Barrier Reef. , 2004, , 69-104.                                                                                                                                                                                                        |      | 269       |
| 22 | Coral-associated bacteria demonstrate phylosymbiosis and cophylogeny. Nature Communications, 2018, 9, 4921.                                                                                                                                                       | 12.8 | 264       |
| 23 | DMSP biosynthesis by an animal and its role in coral thermal stress response. Nature, 2013, 502, 677-680.                                                                                                                                                         | 27.8 | 258       |
| 24 | The Evolutionary History of the Coral Genus Acropora (Scleractinia, Cnidaria) Based on a<br>Mitochondrial and a Nuclear Marker: Reticulation, Incomplete Lineage Sorting, or Morphological<br>Convergence?. Molecular Biology and Evolution, 2001, 18, 1315-1329. | 8.9  | 256       |
| 25 | Projections of climate conditions that increase coral disease susceptibility and pathogen abundance and virulence. Nature Climate Change, 2015, 5, 688-694.                                                                                                       | 18.8 | 252       |
| 26 | Seasonal and local spatial patterns in the upper thermal limits of corals on the inshore Central Great<br>Barrier Reef. Coral Reefs, 1999, 18, 219-228.                                                                                                           | 2.2  | 244       |
| 27 | Coral Pathogens Identified for White Syndrome (WS) Epizootics in the Indo-Pacific. PLoS ONE, 2008, 3, e2393.                                                                                                                                                      | 2.5  | 235       |
| 28 | Juvenile corals can acquire more carbon from high-performance algal symbionts. Coral Reefs, 2009, 28, 405-414.                                                                                                                                                    | 2.2  | 233       |
| 29 | Diversities of coral-associated bacteria differ with location, but not species, for three acroporid corals on the Great Barrier Reef. FEMS Microbiology Ecology, 2009, 68, 152-163.                                                                               | 2.7  | 224       |
| 30 | The Role of Hybridization in the Evolution of Reef Corals. Annual Review of Ecology, Evolution, and Systematics, 2006, 37, 489-517.                                                                                                                               | 8.3  | 206       |
| 31 | Do the organic sulfur compounds DMSP and DMS drive coral microbial associations?. Trends in Microbiology, 2010, 18, 101-108.                                                                                                                                      | 7.7  | 203       |
| 32 | Sediment and Turbidity Associated with Offshore Dredging Increase Coral Disease Prevalence on<br>Nearby Reefs. PLoS ONE, 2014, 9, e102498.                                                                                                                        | 2.5  | 197       |
| 33 | Metagenomic analysis of the coral holobiont during a natural bleaching event on the Great Barrier<br>Reef. Environmental Microbiology Reports, 2011, 3, 651-660.                                                                                                  | 2.4  | 195       |
| 34 | Examination of species boundaries in the Acropora cervicornis group (Scleractinia, Cnidaria) using nuclear DNA sequence analyses. Molecular Ecology, 2000, 9, 1363-1373.                                                                                          | 3.9  | 180       |
| 35 | Scuba diving damage and intensity of tourist activities increases coral disease prevalence. Biological<br>Conservation, 2014, 178, 88-96.                                                                                                                         | 4.1  | 179       |
| 36 | The Roles and Interactions of Symbiont, Host and Environment in Defining Coral Fitness. PLoS ONE, 2009, 4, e6364.                                                                                                                                                 | 2.5  | 176       |

| #  | Article                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Experimental hybridization and breeding incompatibilities within the mating systems of mass spawning reef corals. Coral Reefs, 1997, 16, S53-S65.                                                                                         | 2.2 | 173       |
| 38 | Historical thermal regimes define limits to coral acclimatization. Ecology, 2013, 94, 1078-1088.                                                                                                                                          | 3.2 | 154       |
| 39 | Onset of algal endosymbiont specificity varies among closely related species of <i>Acropora</i> corals during early ontogeny. Molecular Ecology, 2009, 18, 3532-3543.                                                                     | 3.9 | 147       |
| 40 | Global coral disease prevalence associated with sea temperature anomalies and local factors.<br>Diseases of Aquatic Organisms, 2012, 100, 249-261.                                                                                        | 1.0 | 145       |
| 41 | Deep-Sequencing Method for Quantifying Background Abundances of Symbiodinium Types: Exploring the Rare Symbiodinium Biosphere in Reef-Building Corals. PLoS ONE, 2014, 9, e94297.                                                         | 2.5 | 135       |
| 42 | Evidence of an inflammatory-like response in non-normally pigmented tissues of two scleractinian corals. Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 2687-2693.                                                   | 2.6 | 132       |
| 43 | Comparative analysis of energy allocation to tissue and skeletal growth in corals. Limnology and Oceanography, 2002, 47, 1417-1429.                                                                                                       | 3.1 | 126       |
| 44 | Spawning times, reproductive compatibilities and genetic structuring in the Acropora aspera group:<br>evidence for natural hybridization and semi-permeable species boundaries in corals. Molecular<br>Ecology, 2002, 11, 1363-1376.      | 3.9 | 125       |
| 45 | The Urgent Need for Robust Coral Disease Diagnostics. PLoS Pathogens, 2011, 7, e1002183.                                                                                                                                                  | 4.7 | 124       |
| 46 | Isolation of an antimicrobial compound produced by bacteria associated with reef-building corals.<br>PeerJ, 2016, 4, e2275.                                                                                                               | 2.0 | 122       |
| 47 | Impacts of bleaching on the soft coral Lobophytum compactum . I. Fecundity, fertilization and offspring viability. Coral Reefs, 2001, 19, 231-239.                                                                                        | 2.2 | 119       |
| 48 | Seasonal Rainfall and Runoff Promote Coral Disease on an Inshore Reef. PLoS ONE, 2011, 6, e16893.                                                                                                                                         | 2.5 | 117       |
| 49 | Responses of coral-associated bacterial communities to heat stress differ<br>with <i>Symbiodinium</i> type on the same coral host. Molecular Ecology, 2010, 19, 1978-1990.                                                                | 3.9 | 112       |
| 50 | Coral-spawn slicks in the Great Barrier Reef: preliminary observations. Marine Biology, 1987, 94, 521-529.                                                                                                                                | 1.5 | 111       |
| 51 | Methods for sampling free-living Symbiodinium (zooxanthellae) and their distribution and abundance<br>at Lizard Island (Great Barrier Reef). Journal of Experimental Marine Biology and Ecology, 2008, 364,<br>48-53.                     | 1.5 | 108       |
| 52 | Asexual reproduction and genetic determination of growth form in the coral Pavona cactus: biochemical genetic and immunogenic evidence. Oecologia, 1985, 65, 516-525.                                                                     | 2.0 | 106       |
| 53 | Elevated temperature and light enhance progression and spread of black band disease on staghorn corals of the Great Barrier Reef. Marine Biology, 2007, 151, 1711-1720.                                                                   | 1.5 | 106       |
| 54 | Dynamics of seasonal outbreaks of black band disease in an assemblage of <i>Montipora</i> species at<br>Pelorus Island (Great Barrier Reef, Australia). Proceedings of the Royal Society B: Biological Sciences,<br>2009, 276, 2795-2803. | 2.6 | 105       |

| #  | Article                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Onset and establishment of diazotrophs and other bacterial associates in the early life history stages of the coral <i>Acropora millepora</i> . Molecular Ecology, 2014, 23, 4682-4695.                     | 3.9 | 104       |
| 56 | Summer Hot Snaps and Winter Conditions: Modelling White Syndrome Outbreaks on Great Barrier Reef Corals. PLoS ONE, 2010, 5, e12210.                                                                         | 2.5 | 104       |
| 57 | DETECTING REGIONAL VARIATION USING META-ANALYSIS AND LARGE-SCALE SAMPLING: LATITUDINAL PATTERNS IN RECRUITMENT. Ecology, 2002, 83, 436-451.                                                                 | 3.2 | 99        |
| 58 | Direct tracking of coral larvae: Implications for dispersal studies of planktonic larvae in topographically complex environments. Ophelia, 1990, 32, 145-162.                                               | 0.3 | 98        |
| 59 | Epidemiology of skeletal eroding band on the Great Barrier Reef and the role of injury in the initiation of this widespread coral disease. Coral Reefs, 2008, 27, 257-272.                                  | 2.2 | 97        |
| 60 | Atypically low rate of cytochrome b evolution in the scleractinian coral genus Acropora.<br>Proceedings of the Royal Society B: Biological Sciences, 1999, 266, 179-183.                                    | 2.6 | 95        |
| 61 | Successional changes in bacterial communities during the development of black band disease on the reef coral, <i>Montipora hispida</i> . ISME Journal, 2010, 4, 203-214.                                    | 9.8 | 94        |
| 62 | The need for broader ecological and socioeconomic tools to evaluate the effectiveness of coral restoration programs. Restoration Ecology, 2017, 25, 873-883.                                                | 2.9 | 94        |
| 63 | Growth Anomalies on the Coral Genera Acropora and Porites Are Strongly Associated with Host<br>Density and Human Population Size across the Indo-Pacific. PLoS ONE, 2011, 6, e16887.                        | 2.5 | 91        |
| 64 | Reproductive energy investment in corals: scaling with module size. Oecologia, 2003, 136, 524-531.                                                                                                          | 2.0 | 90        |
| 65 | Heritability of the Symbiodinium community in vertically- and horizontally-transmitting broadcast spawning corals. Scientific Reports, 2017, 7, 8219.                                                       | 3.3 | 89        |
| 66 | Vibrio Zinc-Metalloprotease Causes Photoinactivation of Coral Endosymbionts and Coral Tissue Lesions. PLoS ONE, 2009, 4, e4511.                                                                             | 2.5 | 89        |
| 67 | Highly infectious symbiont dominates initial uptake in coral juveniles. Molecular Ecology, 2009, 18, 3518-3531.                                                                                             | 3.9 | 88        |
| 68 | The transcriptomic response of the coral <i>Acropora digitifera</i> to a competent<br><i>Symbiodinium</i> strain: the symbiosome as an arrested early phagosome. Molecular Ecology, 2016,<br>25, 3127-3141. | 3.9 | 88        |
| 69 | Corals Use Similar Immune Cells and Wound-Healing Processes as Those of Higher Organisms. PLoS ONE, 2011, 6, e23992.                                                                                        | 2.5 | 88        |
| 70 | Coral propagation: a review of techniques for ornamental trade and reef restoration. Reviews in Aquaculture, 2017, 9, 238-256.                                                                              | 9.0 | 87        |
| 71 | Biomedical and veterinary science can increase our understanding of coral disease. Journal of<br>Experimental Marine Biology and Ecology, 2008, 362, 63-70.                                                 | 1.5 | 86        |
| 72 | Maternal effects and <i>Symbiodinium</i> community composition drive differential patterns in juvenile survival in the coral <i>Acropora tenuis</i> . Royal Society Open Science, 2016, 3, 160471.          | 2.4 | 86        |

| #  | Article                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Unexpected cryptic species diversity in the widespread coral <i>SeriatoporaÂhystrix</i> masks spatialâ€genetic patterns of connectivity. Molecular Ecology, 2015, 24, 2993-3008.                                  | 3.9  | 85        |
| 74 | Amplicon pyrosequencing reveals spatial and temporal consistency in diazotroph assemblages of the<br><scp><i>A</i></scp> <i>cropora millepora</i> microbiome. Environmental Microbiology, 2014, 16,<br>3345-3359. | 3.8  | 84        |
| 75 | Distribution, host range and large-scale spatial variability in black band disease prevalence on the<br>Great Barrier Reef, Australia. Diseases of Aquatic Organisms, 2006, 69, 41-51.                            | 1.0  | 82        |
| 76 | <i>ReefTemp</i> : An interactive monitoring system for coral bleaching using highâ€resolution SST and improved stress predictors. Geophysical Research Letters, 2008, 35, .                                       | 4.0  | 81        |
| 77 | A comparative study of phenoloxidase activity in diseased and bleached colonies of the coral Acropora millepora. Developmental and Comparative Immunology, 2011, 35, 1098-1101.                                   | 2.3  | 81        |
| 78 | Assembly Rules of Reef Corals Are Flexible along a Steep Climatic Gradient. Current Biology, 2012, 22, 736-741.                                                                                                   | 3.9  | 81        |
| 79 | Microarray analysis reveals transcriptional plasticity in the reef building coral <i>Acropora millepora</i> . Molecular Ecology, 2009, 18, 3062-3075.                                                             | 3.9  | 80        |
| 80 | Population structure in the coral Pavona cactus: clonal genotypes show little phenotypic plasticity.<br>Marine Biology, 1988, 99, 495-505.                                                                        | 1.5  | 79        |
| 81 | Systematics of the Coral Genus Acropora: Implications of New Biological Findings for Species Concepts. Annual Review of Ecology, Evolution, and Systematics, 1994, 25, 237-262.                                   | 6.7  | 77        |
| 82 | The coral immune response facilitates protection against microbes during tissue regeneration.<br>Molecular Ecology, 2015, 24, 3390-3404.                                                                          | 3.9  | 75        |
| 83 | Towards a better understanding of white syndromes and their causes on Indo-Pacific coral reefs.<br>Coral Reefs, 2015, 34, 233-242.                                                                                | 2.2  | 70        |
| 84 | Genetic markers for antioxidant capacity in a reef-building coral. Science Advances, 2016, 2, e1500842.                                                                                                           | 10.3 | 69        |
| 85 | Reserves as tools for alleviating impacts of marine disease. Philosophical Transactions of the Royal<br>Society B: Biological Sciences, 2016, 371, 20150210.                                                      | 4.0  | 69        |
| 86 | The highly cross-fertile coral species, Acropora hyacinthus and Acropora cytherea, constitute statistically distinguishable lineages. Molecular Ecology, 2002, 11, 1339-1349.                                     | 3.9  | 68        |
| 87 | Chimerism in Wild Adult Populations of the Broadcast Spawning Coral Acropora millepora on the Great Barrier Reef. PLoS ONE, 2009, 4, e7751.                                                                       | 2.5  | 67        |
| 88 | Integrated approach to understanding the onset and pathogenesis of black band disease in corals.<br>Environmental Microbiology, 2016, 18, 752-765.                                                                | 3.8  | 67        |
| 89 | Coral larvae for restoration and research: a large-scale method for rearing <i>Acropora millepora</i> larvae, inducing settlement, and establishing symbiosis. PeerJ, 2017, 5, e3732.                             | 2.0  | 67        |
| 90 | High genetic differentiation and cross-shelf patterns of genetic diversity among Great Barrier Reef populations of Symbiodinium. Coral Reefs, 2009, 28, 215-225.                                                  | 2.2  | 66        |

| #   | Article                                                                                                                                                                                                                                   | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Some Rare Indo-Pacific Coral Species Are Probable Hybrids. PLoS ONE, 2008, 3, e3240.                                                                                                                                                      | 2.5 | 64        |
| 92  | The corallivorous invertebrate Drupella aids in transmission of brown band disease on the Great<br>Barrier Reef. Coral Reefs, 2013, 32, 585-595.                                                                                          | 2.2 | 63        |
| 93  | Identification of a Ciliate (Oligohymenophorea: Scuticociliatia) Associated with Brown Band Disease on Corals of the Great Barrier Reef. Applied and Environmental Microbiology, 2008, 74, 883-888.                                       | 3.1 | 62        |
| 94  | Reduced diversity and stability of coral-associated bacterial communities and suppressed immune function precedes disease onset in corals. Royal Society Open Science, 2019, 6, 190355.                                                   | 2.4 | 59        |
| 95  | Deciphering Coral Disease Dynamics: Integrating Host, Microbiome, and the Changing Environment.<br>Frontiers in Ecology and Evolution, 2020, 8, .                                                                                         | 2.2 | 58        |
| 96  | Unexpected patterns of genetic structuring among locations but not colour morphs in Acropora nasuta (Cnidaria; Scleractinia). Molecular Ecology, 2004, 13, 9-20.                                                                          | 3.9 | 57        |
| 97  | A single cyanobacterial ribotype is associated with both red and black bands on diseased corals from Palau. Diseases of Aquatic Organisms, 2006, 69, 111-118.                                                                             | 1.0 | 57        |
| 98  | Coral restoration: Socio-ecological perspectives of benefits and limitations. Biological Conservation, 2019, 229, 14-25.                                                                                                                  | 4.1 | 57        |
| 99  | Analyzing the relationship between ocean temperature anomalies and coral disease outbreaks at broad spatial scales. Coastal and Estuarine Studies, 2006, , 111-128.                                                                       | 0.4 | 53        |
| 100 | Predicting outbreaks of a climate-driven coral disease in the Great Barrier Reef. Coral Reefs, 2011, 30, 485-495.                                                                                                                         | 2.2 | 53        |
| 101 | High potential for formation and persistence of chimeras following aggregated larval settlement in the broadcast spawning coral, <i>Acropora millepora</i> . Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 699-708. | 2.6 | 53        |
| 102 | Unexpected mixed-mode transmission and moderate genetic regulation of Symbiodinium communities in a brooding coral. Heredity, 2018, 121, 524-536.                                                                                         | 2.6 | 53        |
| 103 | Antimicrobial and stress responses to increased temperature and bacterial pathogen challenge in the holobiont of a reefâ€building coral. Molecular Ecology, 2018, 27, 1065-1080.                                                          | 3.9 | 53        |
| 104 | Cumulative Effects of Nutrient Enrichment and Elevated Temperature Compromise the Early Life<br>History Stages of the Coral Acropora tenuis. PLoS ONE, 2016, 11, e0161616.                                                                | 2.5 | 52        |
| 105 | Cumulative effects of suspended sediments, organic nutrients and temperature stress on early life history stages of the coral Acropora tenuis. Scientific Reports, 2017, 7, 44101.                                                        | 3.3 | 52        |
| 106 | White Syndrome-Affected Corals Have a Distinct Microbiome at Disease Lesion Fronts. Applied and Environmental Microbiology, 2017, 83, .                                                                                                   | 3.1 | 52        |
| 107 | Bleaching Resistance and the Role of Algal Endosymbionts. Ecological Studies, 2009, , 83-102.                                                                                                                                             | 1.2 | 51        |
| 108 | Temperature and Water Quality-Related Patterns in Sediment-Associated Symbiodinium Communities<br>Impact Symbiont Uptake and Fitness of Juveniles in the Genus Acropora. Frontiers in Marine Science,<br>2017, 4, .                       | 2.5 | 51        |

| #   | Article                                                                                                                                                                                                                          | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Impacts of bleaching on the soft coral Lobophytum compactum. II. Biochemical changes in adults and their eggs. , 2001, 19, 240-246.                                                                                              |     | 50        |
| 110 | Spatio-temporal coral disease dynamics in the Wakatobi Marine National Park, South-East Sulawesi,<br>Indonesia. Diseases of Aquatic Organisms, 2009, 87, 105-115.                                                                | 1.0 | 50        |
| 111 | Using Coral Disease Prevalence to Assess the Effects of Concentrating Tourism Activities on Offshore<br>Reefs in a Tropical Marine Park. Conservation Biology, 2011, 25, 1044-1052.                                              | 4.7 | 48        |
| 112 | Protected areas mitigate diseases of reefâ€building corals by reducing damage from fishing. Ecology, 2015, 96, 2555-2567.                                                                                                        | 3.2 | 48        |
| 113 | The Importance of Coral Larval Recruitment for the Recovery of Reefs Impacted by Cyclone Yasi in the<br>Central Great Barrier Reef. PLoS ONE, 2013, 8, e65363.                                                                   | 2.5 | 48        |
| 114 | Selective feeding by coral reef fishes on coral lesions associated with brown band and black band disease. Coral Reefs, 2011, 30, 473-481.                                                                                       | 2.2 | 45        |
| 115 | Energy allocation in a reef coral under varying resource availability. Marine Biology, 2012, 159, 177-186.                                                                                                                       | 1.5 | 45        |
| 116 | Impact of Light and Temperature on the Uptake of Algal Symbionts by Coral Juveniles. PLoS ONE, 2012, 7, e50311.                                                                                                                  | 2.5 | 45        |
| 117 | Crown-of-thorns starfish predation and physical injuries promote brown band disease on corals.<br>Coral Reefs, 2014, 33, 705-716.                                                                                                | 2.2 | 44        |
| 118 | Effects of temperature and light on the progression of black band disease on the reef coral,<br>Montipora hispida. Coral Reefs, 2011, 30, 753.                                                                                   | 2.2 | 42        |
| 119 | Spatial and temporal genetic structure of <i><scp>S</scp>ymbiodinium</i> populations within a common reefâ€building coral on the <scp>G</scp> reat <scp>B</scp> arrier <scp>R</scp> eef. Molecular Ecology, 2013, 22, 3693-3708. | 3.9 | 42        |
| 120 | Predation scars may influence host susceptibility to pathogens: evaluating the role of corallivores as vectors of coral disease. Scientific Reports, 2018, 8, 5258.                                                              | 3.3 | 42        |
| 121 | Transgenerational inheritance of shuffled symbiont communities in the coral Montipora digitata.<br>Scientific Reports, 2019, 9, 13328.                                                                                           | 3.3 | 42        |
| 122 | Coral Restoration Effectiveness: Multiregional Snapshots of the Long-Term Responses of Coral<br>Assemblages to Restoration. Diversity, 2020, 12, 153.                                                                            | 1.7 | 42        |
| 123 | A Framework for Responding to Coral Disease Outbreaks that Facilitates Adaptive Management.<br>Environmental Management, 2012, 49, 1-13.                                                                                         | 2.7 | 41        |
| 124 | Influence of marine reserves on coral disease prevalence. Diseases of Aquatic Organisms, 2009, 87,<br>135-150.                                                                                                                   | 1.0 | 41        |
| 125 | Unravelling the links between heat stress, bleaching and disease: fate of tabular corals following a combined disease and bleaching event. Coral Reefs, 2019, 38, 591-603.                                                       | 2.2 | 40        |
| 126 | Allorecognition maturation in the broadcast-spawning coral Acropora millepora. Coral Reefs, 2012, 31, 1019-1028.                                                                                                                 | 2.2 | 39        |

8

| #   | Article                                                                                                                                                                                                                                   | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Direct measurement of dimethylsulfoniopropionate (DMSP) in reef-building corals using quantitative nuclear magnetic resonance (qNMR) spectroscopy. Journal of Experimental Marine Biology and Ecology, 2013, 443, 85-89.                  | 1.5 | 37        |
| 128 | Imaging the uptake of nitrogen-fixing bacteria into larvae of the coral <i>Acropora millepora</i> .<br>ISME Journal, 2016, 10, 1804-1808.                                                                                                 | 9.8 | 36        |
| 129 | Rapid declines in metabolism explain extended coral larval longevity. Coral Reefs, 2013, 32, 539-549.                                                                                                                                     | 2.2 | 35        |
| 130 | Genetic assignment of recruits reveals short―and longâ€distance larval dispersal in<br><i><scp>P</scp>ocillopora damicornis</i> on the <scp>G</scp> reat <scp>B</scp> arrier<br><scp>R</scp> eef. Molecular Ecology, 2013, 22, 5821-5834. | 3.9 | 34        |
| 131 | Effects of suspended sediments and nutrient enrichment on juvenile corals. Marine Pollution Bulletin, 2017, 125, 166-175.                                                                                                                 | 5.0 | 34        |
| 132 | An Indo-Pacific coral spawning database. Scientific Data, 2021, 8, 35.                                                                                                                                                                    | 5.3 | 34        |
| 133 | Cymo melanodactylus crabs slow progression of white syndrome lesions on corals. Coral Reefs, 2013, 32, 43-48.                                                                                                                             | 2.2 | 33        |
| 134 | Implications of Ocean Acidification for Marine Microorganisms from the Free-Living to the Host-Associated. Frontiers in Marine Science, 2016, 3, .                                                                                        | 2.5 | 33        |
| 135 | Enzyme activity demonstrates multiple pathways of innate immunity in Indo-Pacific anthozoans.<br>Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 3879-3887.                                                           | 2.6 | 32        |
| 136 | Revisiting the connectivity puzzle of the common coral <i><scp>P</scp>ocillopora damicornis</i> .<br>Molecular Ecology, 2013, 22, 5805-5820.                                                                                              | 3.9 | 32        |
| 137 | Sperm dispersal distances estimated by parentage analysis in a brooding scleractinian coral.<br>Molecular Ecology, 2016, 25, 1398-1415.                                                                                                   | 3.9 | 32        |
| 138 | Lunar Phase Modulates Circadian Gene Expression Cycles in the Broadcast Spawning Coral<br><i>Acropora millepora</i> . Biological Bulletin, 2016, 230, 130-142.                                                                            | 1.8 | 32        |
| 139 | Phylogeny of the coral pathogen <i>Vibrio coralliilyticus</i> . Environmental Microbiology Reports, 2010, 2, 172-178.                                                                                                                     | 2.4 | 31        |
| 140 | Effects of delayed settlement on post-settlement growth and survival of scleractinian coral larvae.<br>Oecologia, 2013, 173, 431-438.                                                                                                     | 2.0 | 31        |
| 141 | <i>In situ</i> visualization of bacterial populations in coral tissues: pitfalls and solutions. PeerJ, 2016, 4, e2424.                                                                                                                    | 2.0 | 31        |
| 142 | Spatiotemporal patterns of coral disease prevalence on Heron Island, Great Barrier Reef, Australia.<br>Coral Reefs, 2010, 29, 1035-1045.                                                                                                  | 2.2 | 30        |
| 143 | Coâ€dynamics of Symbiodiniaceae and bacterial populations during the first year of symbiosis with<br><i>Acropora tenuis</i> juveniles. MicrobiologyOpen, 2020, 9, e959.                                                                   | 3.0 | 30        |
| 144 | Variation in the health and biochemical condition of the coral Acropora tenuis along two water<br>quality gradients on the Great Barrier Reef, Australia. Marine Pollution Bulletin, 2017, 119, 106-119.                                  | 5.0 | 26        |

| #   | Article                                                                                                                                                                                                                                                        | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Elevated CO2 Has Little Influence on the Bacterial Communities Associated With the pH-Tolerant<br>Coral, Massive Porites spp Frontiers in Microbiology, 2018, 9, 2621.                                                                                         | 3.5 | 26        |
| 146 | Detection and Quantification of the Coral Pathogen <i>Vibrio coralliilyticus</i> by Real-Time PCR with TaqMan Fluorescent Probes. Applied and Environmental Microbiology, 2010, 76, 5282-5286.                                                                 | 3.1 | 25        |
| 147 | Temporal and spatial variation in fatty acid composition in Acropora tenuis corals along water quality gradients on the Great Barrier Reef, Australia. Coral Reefs, 2019, 38, 215-228.                                                                         | 2.2 | 25        |
| 148 | Pyrosequencingâ€based profiling of archaeal and bacterial 16S r <scp>RNA</scp> genes identifies a novel archaeon associated with black band disease in corals. Environmental Microbiology, 2013, 15, 2994-3007.                                                | 3.8 | 24        |
| 149 | Disease outbreaks, bleaching and a cyclone drive changes in coral assemblages on an inshore reef of the Great Barrier Reef. Coral Reefs, 2013, 32, 815-824.                                                                                                    | 2.2 | 24        |
| 150 | Uncoupling temperature-dependent mortality from lipid depletion for scleractinian coral larvae.<br>Coral Reefs, 2017, 36, 97-104.                                                                                                                              | 2.2 | 23        |
| 151 | Decadal erosion of coral assemblages by multiple disturbances in the Palm Islands, central Great<br>Barrier Reef. Scientific Reports, 2018, 8, 11885.                                                                                                          | 3.3 | 23        |
| 152 | Characterization of coral-associated microbial aggregates (CAMAs) within tissues of the coral Acropora hyacinthus. Scientific Reports, 2019, 9, 14662.                                                                                                         | 3.3 | 23        |
| 153 | Expression of Putative Immune Response Genes during Early Ontogeny in the Coral Acropora millepora. PLoS ONE, 2012, 7, e39099.                                                                                                                                 | 2.5 | 23        |
| 154 | Assessing baseline levels of coral health in a newly established marine protected area in a global<br>scuba diving hotspot. Marine Environmental Research, 2015, 103, 56-65.                                                                                   | 2.5 | 19        |
| 155 | Temporal patterns in innate immunity parameters in reefâ€building corals and linkages with local climatic conditions. Ecosphere, 2016, 7, e01505.                                                                                                              | 2.2 | 18        |
| 156 | Plasticity in gene expression and fatty acid profiles of Acropora tenuis reciprocally transplanted<br>between two water quality regimes in the central Great Barrier Reef, Australia. Journal of<br>Experimental Marine Biology and Ecology, 2019, 511, 40-53. | 1.5 | 18        |
| 157 | SELF-RECOGNITION IN SPONGES AND CORALS?. Evolution; International Journal of Organic Evolution, 1985, 39, 461-463.                                                                                                                                             | 2.3 | 17        |
| 158 | Newly characterized distinct phases of the coral disease â€~atramentous necrosis' on the Great Barrier<br>Reef. Diseases of Aquatic Organisms, 2008, 81, 255-259.                                                                                              | 1.0 | 17        |
| 159 | Visualization of coral host–pathogen interactions using a stable GFP-labeled Vibrio coralliilyticus<br>strain. Coral Reefs, 2015, 34, 655-662.                                                                                                                 | 2.2 | 16        |
| 160 | Demographic aspects of the soft coral Sinularia flexibilis leading to local dominance on coral reefs.<br>Hydrobiologia, 2004, 530-531, 433-441.                                                                                                                | 2.0 | 13        |
| 161 | CRISPR-Cas Defense System and Potential Prophages in Cyanobacteria Associated with the Coral Black<br>Band Disease. Frontiers in Microbiology, 2016, 7, 2077.                                                                                                  | 3.5 | 13        |
| 162 | Novel T4 bacteriophages associated with black band disease in corals. Environmental Microbiology, 2019, 21, 1969-1979.                                                                                                                                         | 3.8 | 13        |

| #   | Article                                                                                                                                                                                                                                                | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Microsatellite allele sizes alone are insufficient to delineate species boundaries in<br><i>Symbiodinium</i> . Molecular Ecology, 2016, 25, 2719-2723.                                                                                                 | 3.9 | 11        |
| 164 | Apparent Involvement of a $\hat{l}^21$ Type Integrin in Coral Fertilization. Marine Biotechnology, 2007, 9, 760-765.                                                                                                                                   | 2.4 | 8         |
| 165 | Experimental evolution of the coral algal endosymbiont, <i>Cladocopium goreaui</i> : lessons learnt<br>across a decade of stress experiments to enhance coral heat tolerance. Restoration Ecology, 2021, 29,<br>e13342.                                | 2.9 | 8         |
| 166 | Multiple occupancy–abundance patterns in staghorn coral communities. Diversity and Distributions, 2013, 19, 884-895.                                                                                                                                   | 4.1 | 7         |
| 167 | Effects of coral restoration on fish communities: snapshots of longâ€ŧerm, multiregional responses and implications for practice. Restoration Ecology, 2020, 28, 1158-1171.                                                                            | 2.9 | 7         |
| 168 | Modelling environmental drivers of black band disease outbreaks in populations of foliose corals in the genus <i>Montipora</i> . PeerJ, 2017, 5, e3438.                                                                                                | 2.0 | 6         |
| 169 | Predicting the spatial distribution of allele frequencies for a gene associated with tolerance to<br>eutrophication and high temperature in the reef-building coral, Acropora millepora, on the Great<br>Barrier Reef. Coral Reefs, 2020, 39, 147-158. | 2.2 | 5         |
| 170 | Energy depletion and opportunistic microbial colonisation in white syndrome lesions from corals across the Indo-Pacific. Scientific Reports, 2020, 10, 19990.                                                                                          | 3.3 | 4         |
| 171 | Detecting Regional Variation Using Meta-Analysis and Large-Scale Sampling: Latitudinal Patterns in Recruitment. Ecology, 2002, 83, 436.                                                                                                                | 3.2 | 2         |
| 172 | SUPPLY-SIDE ECOLOGY WORKS BOTH WAYS: THE LINK BETWEEN BENTHIC ADULTS, FECUNDITY, AND LARVAL RECRUITS. , 2000, 81, 2241.                                                                                                                                |     | 1         |
| 173 | Absence of skeleton deposition in juveniles of the scleractinian coral Acropora millepora. Coral Reefs, 2012, 31, 1111-1111.                                                                                                                           | 2.2 | 0         |
| 174 | Protected Areas Moderate Diseases of Reef-Building Corals. Bulletin of the Ecological Society of America, 2015, 96, 647-650.                                                                                                                           | 0.2 | 0         |