Marjana Tomic-Canic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6865030/publications.pdf Version: 2024-02-01

	41344	18130
15,360	49	120
citations	h-index	g-index
132	132	18284
docs citations	times ranked	citing authors
	15,360 citations 132 docs citations	15,36049citationsh-index132132docs citationstimes ranked

#	Article	IF	CITATIONS
1	PERSPECTIVE ARTICLE: Growth factors and cytokines in wound healing. Wound Repair and Regeneration, 2008, 16, 585-601.	3.0	2,771
2	Wound repair and regeneration: Mechanisms, signaling, and translation. Science Translational Medicine, 2014, 6, 265sr6.	12.4	2,114
3	Cellular and molecular basis of wound healing in diabetes. Journal of Clinical Investigation, 2007, 117, 1219-1222.	8.2	1,301
4	Epithelialization in Wound Healing: A Comprehensive Review. Advances in Wound Care, 2014, 3, 445-464.	5.1	945
5	Keratins and the Keratinocyte Activation Cycle. Journal of Investigative Dermatology, 2001, 116, 633-640.	0.7	468
6	Clinical application of growth factors and cytokines in wound healing. Wound Repair and Regeneration, 2014, 22, 569-578.	3.0	453
7	Epithelial-mesenchymal transition in tissue repair and fibrosis. Cell and Tissue Research, 2016, 365, 495-506.	2.9	431
8	Nanotechnology-Driven Therapeutic Interventions in Wound Healing: Potential Uses and Applications. ACS Central Science, 2017, 3, 163-175.	11.3	342
9	Molecular Pathogenesis of Chronic Wounds. American Journal of Pathology, 2005, 167, 59-69.	3.8	312
10	Interactions of Methicillin Resistant Staphylococcus aureus USA300 and Pseudomonas aeruginosa in Polymicrobial Wound Infection. PLoS ONE, 2013, 8, e56846.	2.5	302
11	Molecular Markers in Patients with Chronic Wounds to Guide Surgical Debridement. Molecular Medicine, 2007, 13, 30-39.	4.4	297
12	Stem Cells in Skin Regeneration, Wound Healing, and Their Clinical Applications. International Journal of Molecular Sciences, 2015, 16, 25476-25501.	4.1	244
13	Biology and Biomarkers for Wound Healing. Plastic and Reconstructive Surgery, 2016, 138, 18S-28S.	1.4	207
14	Cortisol Synthesis in Epidermis Is Induced by IL-1 and Tissue Injury. Journal of Biological Chemistry, 2011, 286, 10265-10275.	3.4	167
15	Novel Genomic Effects of Glucocorticoids in Epidermal Keratinocytes. Journal of Biological Chemistry, 2007, 282, 4021-4034.	3.4	164
16	Epidermal stem cells: the cradle of epidermal determination, differentiation and wound healing. Biology of the Cell, 2005, 97, 173-183.	2.0	163
17	Mechanism of Sustained Release of Vascular Endothelial Growth Factor in Accelerating Experimental Diabetic Healing. Journal of Investigative Dermatology, 2009, 129, 2275-2287.	0.7	152
18	Deregulated immune cell recruitment orchestrated by FOXM1 impairs human diabetic wound healing. Nature Communications, 2020, 11, 4678.	12.8	151

MARJANA TOMIC-CANIC

#	Article	IF	CITATIONS
19	Chronic wound repair and healing in older adults: Current status and future research. Wound Repair and Regeneration, 2015, 23, 1-13.	3.0	150
20	Attenuation of the Transforming Growth Factor β-Signaling Pathway in Chronic Venous Ulcers. Molecular Medicine, 2010, 16, 92-101.	4.4	128
21	Induction of Specific MicroRNAs Inhibits Cutaneous Wound Healing. Journal of Biological Chemistry, 2012, 287, 29324-29335.	3.4	118
22	Deregulation of keratinocyte differentiation and activation: a hallmark of venous ulcers. Journal of Cellular and Molecular Medicine, 2008, 12, 2675-2690.	3.6	116
23	The role of surgical debridement in healing of diabetic foot ulcers. Wound Repair and Regeneration, 2010, 18, 433-438.	3.0	108
24	A bioengineered living cell construct activates an acute wound healing response in venous leg ulcers. Science Translational Medicine, 2017, 9, .	12.4	100
25	Epidermal Differentiation in Barrier Maintenance and Wound Healing. Advances in Wound Care, 2014, 3, 272-280.	5.1	97
26	Retinoidâ€responsive transcriptional changes in epidermal keratinocytes. Journal of Cellular Physiology, 2009, 220, 427-439.	4.1	96
27	Skin Microbiota and its Interplay with Wound Healing. American Journal of Clinical Dermatology, 2020, 21, 36-43.	6.7	95
28	Probiotics or proâ€healers: the role of beneficial bacteria in tissue repair. Wound Repair and Regeneration, 2017, 25, 912-922.	3.0	93
29	Novel Mechanism of Steroid Action in Skin through Glucocorticoid Receptor Monomers. Molecular and Cellular Biology, 2000, 20, 4328-4339.	2.3	91
30	Staphylococcus aureus Triggers Induction of miR-15B-5P to Diminish DNA Repair and Deregulate Inflammatory Response in Diabetic Foot Ulcers. Journal of Investigative Dermatology, 2018, 138, 1187-1196.	0.7	80
31	Altered ECM deposition by diabetic foot ulcerâ€derived fibroblasts implicates fibronectin in chronic wound repair. Wound Repair and Regeneration, 2016, 24, 630-643.	3.0	77
32	A gene signature of nonhealing venous ulcers: Potential diagnostic markers. Journal of the American Academy of Dermatology, 2008, 59, 758-771.	1.2	76
33	Novel Regulation of Keratin Gene Expression by Thyroid Hormone and Retinoid Receptors. Journal of Biological Chemistry, 1996, 271, 1416-1423.	3.4	72
34	Integrative analysis of miRNA and mRNA paired expression profiling of primary fibroblast derived from diabetic foot ulcers reveals multiple impaired cellular functions. Wound Repair and Regeneration, 2016, 24, 943-953.	3.0	71
35	Perforin-2 is essential for intracellular defense of parenchymal cells and phagocytes against pathogenic bacteria. ELife, 2015, 4, .	6.0	71
36	Three-Dimensional Human Tissue Models That Incorporate Diabetic Foot Ulcer-Derived Fibroblasts Mimic <i>In Vivo</i> Features of Chronic Wounds. Tissue Engineering - Part C: Methods, 2015, 21, 499-508.	2.1	69

Marjana Tomic-Canic

#	Article	IF	CITATIONS
37	Transcriptional Profiling of Epidermal Keratinocytes: Comparison of Genes Expressed in Skin, Cultured Keratinocytes, and Reconstituted Epidermis, Using Large DNA Microarrays. Journal of Investigative Dermatology, 2003, 121, 1459-1468.	0.7	68
38	Keratin dressings speed epithelialization of deep partialâ€ŧhickness wounds. Wound Repair and Regeneration, 2012, 20, 236-242.	3.0	66
39	Increased number of Langerhans cells in the epidermis of diabetic foot ulcers correlates with healing outcome. Immunologic Research, 2013, 57, 222-228.	2.9	65
40	Role of keratinocytes in healing of chronic wounds. Surgical Technology International, 2008, 17, 105-12.	0.2	65
41	Deep Tissue Injury in Development of Pressure Ulcers: A Decrease of Inflammasome Activation and Changes in Human Skin Morphology in Response to Aging and Mechanical Load. PLoS ONE, 2013, 8, e69223.	2.5	63
42	From an Enhanceosome to a Repressosome: Molecular Antagonism between Glucocorticoids and EGF Leads to Inhibition of Wound Healing. Journal of Molecular Biology, 2005, 345, 1083-1097.	4.2	62
43	Preclinical Models of Wound Healing: Is Man the Model? Proceedings of the Wound Healing Society Symposium. Advances in Wound Care, 2013, 2, 1-4.	5.1	59
44	Topical mevastatin promotes wound healing by inhibiting the transcription factor c-Myc via the glucocorticoid receptor and the long non-coding RNA Gas5. Journal of Biological Chemistry, 2018, 293, 1439-1449.	3.4	57
45	Operative Debridement of Pressure Ulcers. World Journal of Surgery, 2009, 33, 1396-1402.	1.6	55
46	Deregulation of epidermal stem cell niche contributes to pathogenesis of nonhealing venous ulcers. Wound Repair and Regeneration, 2014, 22, 220-227.	3.0	54
47	Farnesyl Pyrophosphate Inhibits Epithelialization and Wound Healing through the Glucocorticoid Receptor. Journal of Biological Chemistry, 2010, 285, 1980-1988.	3.4	53
48	Comparative Genomic, MicroRNA, and Tissue Analyses Reveal Subtle Differences between Non-Diabetic and Diabetic Foot Skin. PLoS ONE, 2015, 10, e0137133.	2.5	53
49	The Nuclear Hormone Receptor Coactivator NRC Is a Pleiotropic Modulator Affecting Growth, Development, Apoptosis, Reproduction, and Wound Repair. Molecular and Cellular Biology, 2004, 24, 4994-5004.	2.3	50
50	ADAM12: a potential target for the treatment of chronic wounds. Journal of Molecular Medicine, 2008, 86, 961-969.	3.9	50
51	Primary cultured fibroblasts derived from patients with chronic wounds: a methodology to produce human cell lines and test putative growth factor therapy such as GMCSF. Journal of Translational Medicine, 2008, 6, 75.	4.4	49
52	Healing Chronic Wounds: Current Challenges and Potential Solutions. Current Dermatology Reports, 2018, 7, 296-302.	2.1	46
53	<scp>US</scp> – <scp>N</scp> ational <scp>I</scp> nstitutes of <scp>H</scp> ealthâ€funded research for cutaneous wounds in 2012. Wound Repair and Regeneration, 2013, 21, 789-792.	3.0	45
54	Descriptive vs mechanistic scientific approach to study wound healing and its inhibition: Is there a value of translational research involving human subjects?. Experimental Dermatology, 2018, 27, 551-562.	2.9	45

#	Article	IF	CITATIONS
55	The synergism of age and db/db genotype impairs wound healingâ~†. Experimental Gerontology, 2007, 42, 523-531.	2.8	44
56	Specific Organization of the Negative Response Elements for Retinoic Acid and Thyroid Hormone Receptors in Keratin Gene Family. Journal of Investigative Dermatology, 1997, 109, 566-572.	0.7	43
57	A Modeling Conundrum: MurineÂModels for Cutaneous WoundÂHealing. Journal of Investigative Dermatology, 2018, 138, 736-740.	0.7	43
58	Human Ex Vivo Wound Healing Model. Methods in Molecular Biology, 2013, 1037, 255-264.	0.9	42
59	Clinical efficacy and mechanism of bilayered living human skin equivalent (HSE) in treatment of diabetic foot ulcers. Surgical Technology International, 2003, 11, 23-31.	0.2	42
60	Identification of the Retinoic Acid and Thyroid Hormone Receptor-Responsive Element in the Human K14 Keratin Gene. Journal of Investigative Dermatology, 1992, 99, 842-847.	0.7	40
61	Thyroid Hormones and Gamma Interferon Specifically Increase K15 Keratin Gene Transcription. Molecular and Cellular Biology, 2004, 24, 3168-3179.	2.3	40
62	Streptolysin O enhances keratinocyte migration and proliferation and promotes skin organ culture wound healing in vitro. Wound Repair and Regeneration, 2007, 15, 71-79.	3.0	40
63	Differentiation of diabetic foot ulcer–derived induced pluripotent stem cells reveals distinct cellular and tissue phenotypes. FASEB Journal, 2019, 33, 1262-1277.	0.5	39
64	Mesenchymal stromal cells prevent bleomycinâ€induced lung and skin fibrosis in aged mice and restore wound healing. Journal of Cellular Physiology, 2018, 233, 5503-5512.	4.1	38
65	The effects of caffeine on wound healing. International Wound Journal, 2016, 13, 605-613.	2.9	37
66	Mevastatin promotes healing by targeting caveolin-1 to restore EGFR signaling. JCI Insight, 2019, 4, .	5.0	34
67	Effect of Physical Therapy on Wound Healing and Quality of Life in Patients With Venous Leg Ulcers. JAMA Dermatology, 2015, 151, 320.	4.1	33
68	Gene array technology and pathogenesis of chronic wounds. American Journal of Surgery, 2004, 188, 67-72.	1.8	30
69	Pharmacological and Genetic Inhibition of Caveolin-1 Promotes Epithelialization and Wound Closure. Molecular Therapy, 2019, 27, 1992-2004.	8.2	30
70	Staphylococcus epidermidis Boosts Innate Immune Response by Activation of Gamma Delta T Cells and Induction of Perforin-2 in Human Skin. Frontiers in Immunology, 2020, 11, 550946.	4.8	29
71	Intracellular escape strategies of <i>Staphylococcus aureus</i> in persistent cutaneous infections. Experimental Dermatology, 2021, 30, 1428-1439.	2.9	29
72	The Book of Opposites: The Role of the Nuclear Receptor Co-regulators in the Suppression of Epidermal Genes by Retinoic Acid and Thyroid Hormone Receptors. Journal of Investigative Dermatology, 2005, 124, 1034-1043.	0.7	28

MARJANA TOMIC-CANIC

#	Article	IF	CITATIONS
73	Farnesyl Pyrophosphate Is a Novel Transcriptional Activator for a Subset of Nuclear Hormone Receptors. Molecular Endocrinology, 2007, 21, 2672-2686.	3.7	28
74	Stress-Induced Hormones Cortisol and Epinephrine Impair Wound Epithelization. Advances in Wound Care, 2012, 1, 29-35.	5.1	28
75	Single cell analyses reveal specific distribution of antiâ€bacterial molecule Perforinâ€2 in human skin and its modulation by wounding and <i>Staphylococcus aureus</i> infection. Experimental Dermatology, 2019, 28, 225-232.	2.9	28
76	Negative Response Elements in Keratin Genes Mediate Transcriptional Repression and the Cross-talk among Nuclear Receptors. Journal of Biological Chemistry, 2001, 276, 45914-45920.	3.4	27
77	Using Gene Transcription Patterns (Bar Coding Scans) to Guide Wound Debridement and Healing. Advances in Skin and Wound Care, 2008, 21, 487-492.	1.0	27
78	Intracellular Staphylococcus aureus triggers pyroptosis and contributes to inhibition of healing due to perforin-2 suppression. Journal of Clinical Investigation, 2021, 131, .	8.2	27
79	Epigenetic regulation of cellular functions in wound healing. Experimental Dermatology, 2021, 30, 1073-1089.	2.9	26
80	Skin under the (Spot)-Light: Cross-Talk with the Central Hypothalamic–Pituitary–Adrenal (HPA) Axis. Journal of Investigative Dermatology, 2015, 135, 1469-1471.	0.7	25
81	A tractable, simplified ex vivo human skin model of wound infection. Wound Repair and Regeneration, 2019, 27, 421-425.	3.0	25
82	Role of Scarf and Its Binding Target Proteins in Epidermal Calcium Homeostasis. Journal of Biological Chemistry, 2007, 282, 18645-18653.	3.4	23
83	Surgical Pathology to Describe the Clinical Margin of Debridement of Chronic Wounds Using a Wound Electronic Medical Record. Journal of the American College of Surgeons, 2009, 209, 254-260e1.	0.5	23
84	Statins as potential therapeutic agents for healing disorders. Expert Review of Dermatology, 2010, 5, 689-698.	0.3	23
85	Stressing the Steroids in Skin: Paradox or Fine-Tuning?. Journal of Investigative Dermatology, 2014, 134, 2869-2872.	0.7	23
86	The role of surgical debridement in healing of diabetic foot ulcers. Skinmed, 2012, 10, 24-6.	0.0	20
87	Codominant Regulation of Keratin Gene Expression by Cell Surface Receptors and Nuclear Receptors. Experimental Cell Research, 1996, 224, 96-102.	2.6	19
88	Skin Metabolite, Farnesyl Pyrophosphate, Regulates Epidermal Response to Inflammation, Oxidative Stress, and Migration. Journal of Cellular Physiology, 2016, 231, 2452-2463.	4.1	19
89	Optical coherence tomography for assessment of epithelialization in a human ex vivo wound model. Wound Repair and Regeneration, 2017, 25, 1017-1026.	3.0	18
90	A bioengineered living cell construct activates metallothionein/zinc/MMP8 and inhibits TGF β to stimulate remodeling of fibrotic venous leg ulcers. Wound Repair and Regeneration, 2020, 28, 164-176.	3.0	18

MARJANA TOMIC-CANIC

#	Article	IF	CITATIONS
91	MiR-21 and miR-205 are induced in invasive cutaneous squamous cell carcinomas. Archives of Dermatological Research, 2017, 309, 133-139.	1.9	17
92	Notch1 signaling determines the plasticity and function of fibroblasts in diabetic wounds. Life Science Alliance, 2020, 3, e202000769.	2.8	17
93	Increased ILâ€17â€expressing γδT cells in seborrhoeic dermatitisâ€like lesions of the <i>Mpzl3</i> knockout mice. Experimental Dermatology, 2018, 27, 1408-1411.	2.9	16
94	Cellular Senescence in Diabetic Wounds: When Too Many Retirees Stress the System. Journal of Investigative Dermatology, 2019, 139, 997-999.	0.7	16
95	The Potential Impact of Social Genomics on Wound Healing. Advances in Wound Care, 2020, 9, 325-331.	5.1	16
96	Genomics of Human Fibrotic Diseases: Disordered Wound Healing Response. International Journal of Molecular Sciences, 2020, 21, 8590.	4.1	16
97	Modalities to Treat Venous Ulcers. Plastic and Reconstructive Surgery, 2016, 138, 199S-208S.	1.4	15
98	Updates in wound healing: Mechanisms and translation. Experimental Dermatology, 2017, 26, 97-98.	2.9	14
99	Micro-RNAs: New Regulators of Wound Healing. Surgical Technology International, 2011, 21, 51-60.	0.2	14
100	Perforins Expression by Cutaneous Gamma Delta T Cells. Frontiers in Immunology, 2020, 11, 1839.	4.8	13
101	Perspective and Consensus Opinion: Good Practices for Using Organotypic Skin and Epidermal Equivalents in Experimental Dermatology Research. Journal of Investigative Dermatology, 2021, 141, 203-205.	0.7	13
102	Glucocorticoid-mediated induction of caveolin-1 disrupts cytoskeletal organization, inhibits cell migration and re-epithelialization of non-healing wounds. Communications Biology, 2021, 4, 757.	4.4	13
103	Advanced Wound Diagnostics: Toward Transforming Wound Care into Precision Medicine. Advances in Wound Care, 2022, 11, 330-359.	5.1	13
104	Glucocorticoid Receptor Localizes to Adherens Junctions at the Plasma Membrane of Keratinocytes. PLoS ONE, 2013, 8, e63453.	2.5	13
105	In vitro skin models to study epithelial regeneration from the hair follicle. PLoS ONE, 2017, 12, e0174389.	2.5	13
106	Preclinical models for wound-healing studies. , 2018, , 223-253.		12
107	Multimodal, in Situ Imaging of Ex Vivo Human Skin Reveals Decrease of Cholesterol Sulfate in the Neoepithelium during Acute Wound Healing. Analytical Chemistry, 2020, 92, 1386-1394.	6.5	12
108	Hair Cycling and Wound Healing: To Pluck or Not to Pluck?. Journal of Investigative Dermatology, 2011, 131, 292-294.	0.7	11

#	Article	IF	CITATIONS
109	Quality assessment of tissue specimens for studies of diabetic foot ulcers. Experimental Dermatology, 2013, 22, 216-218.	2.9	11
110	Topical Lâ€ŧhyroxine: The Cinderella among hormones waiting to dance on the floor of dermatological therapy?. Experimental Dermatology, 2020, 29, 910-923.	2.9	11
111	Angiogenin Released from ABCB5+ Stromal Precursors Improves Healing of Diabetic Wounds by Promoting Angiogenesis. Journal of Investigative Dermatology, 2022, 142, 1725-1736.e10.	0.7	11
112	Cellular reprogramming of diabetic foot ulcer fibroblasts triggers proâ€healing miRNAâ€mediated epigenetic signature. Experimental Dermatology, 2021, 30, 1065-1072.	2.9	10
113	Nexus Between Epidermolysis Bullosa and Transcriptional Regulation by Thyroid Hormone in Epidermal Keratinocytes. Clinical and Translational Science, 2008, 1, 45-49.	3.1	9
114	Mineralocorticoid Receptor Antagonists—A New Sprinkle of Salt and Youth. Journal of Investigative Dermatology, 2016, 136, 1938-1941.	0.7	8
115	Keratinocytes produce IL-6 in response to desmoglein 1 cleavage by Staphylococcus aureus exfoliative toxin A. Immunologic Research, 2013, 57, 258-267.	2.9	7
116	Nanoparticles for Fidgety Cell Movement and Enhanced Wound Healing. Journal of Investigative Dermatology, 2015, 135, 2151-2153.	0.7	7
117	Catalase, a therapeutic target in the reversal of estrogen-mediated aging. Molecular Therapy, 2022, 30, 947-962.	8.2	5
118	Dichotomous role of miR193b-3p in diabetic foot ulcers maintains inhibition of healing and suppression of tumor formation. Science Translational Medicine, 2022, 14, eabg8397.	12.4	5
119	Wound healing protects against chemotherapy-induced alopecia in young rats via up-regulating interleukin-1β-mediated signaling. Heliyon, 2017, 3, e00309.	3.2	3
120	Novel Diagnostic Technologies and Therapeutic Approaches Targeting Chronic Wound Biofilms and Microbiota. Current Dermatology Reports, 2022, 11, 60-72.	2.1	3
121	Advances in Stem Cell-Based Therapy for Hair Loss. CellR4, 2020, 8, .	0.5	2
122	Skinomics: A New Toolbox to Understand Skin Aging. , 2017, , 1361-1379.		1
123	Physiology and Pathophysiology of Wound Healing in Diabetes. Contemporary Diabetes, 2018, , 109-130.	0.0	1
124	Novel mevalonate kinase missense mutation in a patient with disseminated superficial actinic porokeratosis. JAAD Case Reports, 2018, 4, 340-343.	0.8	1
125	The Anatomy of Cutaneous Wound Healing and Its Inhibition: From Mechanisms to Therapy. FASEB Journal, 2020, 34, 1-1.	0.5	1

Skinomics: A New Toolbox to Understand Skin Aging. , 2015, , 1-19.

0