Mattia Zampieri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6864124/publications.pdf

Version: 2024-02-01

414414 430874 1,729 31 18 32 citations h-index g-index papers 37 37 37 2744 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Combining CRISPRi and metabolomics for functional annotation of compound libraries. Nature Chemical Biology, 2022, 18, 482-491.	8.0	33
2	Expanding the search for small-molecule antibacterials by multidimensional profiling. Nature Chemical Biology, 2022, 18, 584-595.	8.0	6
3	The genetic underground of antibiotic resistance. Science, 2021, 371, 783-784.	12.6	9
4	Pareto optimality between growth-rate and lag-time couples metabolic noise to phenotypic heterogeneity in Escherichia coli. Nature Communications, 2021, 12, 3204.	12.8	13
5	Expression Dysregulation as a Mediator of Fitness Costs in Antibiotic Resistance. Antimicrobial Agents and Chemotherapy, 2021, 65, e0050421.	3.2	5
6	Model-based integration of genomics and metabolomics reveals SNP functionality in <i>Mycobacterium tuberculosis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 8494-8502.	7.1	24
7	Regulatory mechanisms underlying coordination of amino acid and glucose catabolism in Escherichia coli. Nature Communications, 2019, 10, 3354.	12.8	101
8	Metabolic profiling of cancer cells reveals genome-wide crosstalk between transcriptional regulators and metabolism. Nature Communications, 2019, 10, 1841.	12.8	108
9	Metabolomics-Driven Exploration of the Chemical Drug Space to Predict Combination Antimicrobial Therapies. Molecular Cell, 2019, 74, 1291-1303.e6.	9.7	57
10	High-throughput metabolomic analysis predicts mode of action of uncharacterized antimicrobial compounds. Science Translational Medicine, 2018, 10, .	12.4	102
11	From the metabolic profiling of drug response to drug mode of action. Current Opinion in Systems Biology, 2018, 10, 26-33.	2.6	6
12	A framework for large-scale metabolome drug profiling links coenzyme A metabolism to the toxicity of anti-cancer drug dichloroacetate. Communications Biology, 2018, 1, 101.	4.4	26
13	Genomewide landscape of gene–metabolome associations in <i>Escherichia coli</i> . Molecular Systems Biology, 2017, 13, 907.	7.2	109
14	Nontargeted Metabolomics Reveals the Multilevel Response to Antibiotic Perturbations. Cell Reports, 2017, 19, 1214-1228.	6.4	139
15	Metabolic constraints on the evolution of antibiotic resistance. Molecular Systems Biology, 2017, 13, 917.	7.2	151
16	Frontiers of high-throughput metabolomics. Current Opinion in Chemical Biology, 2017, 36, 15-23.	6.1	139
17	Metabolomics-driven understanding of genotype-phenotype relations in model organisms. Current Opinion in Systems Biology, 2017, 6, 28-36.	2.6	17
18	Systematic Analysis of Transcriptional and Post-transcriptional Regulation of Metabolism in Yeast. PLoS Computational Biology, 2017, 13, e1005297.	3.2	51

#	Article	IF	CITATIONS
19	Model-based media selection to minimize the cost of metabolic cooperation in microbial ecosystems. Bioinformatics, 2016, 32, 1733-1739.	4.1	13
20	Dynamic phosphoproteomics reveals TORC1-dependent regulation of yeast nucleotide and amino acid biosynthesis. Science Signaling, 2015, 8, rs4.	3.6	64
21	Large-scale functional analysis of the roles of phosphorylation in yeast metabolic pathways. Science Signaling, 2014, 7, rs6.	3.6	32
22	Detection of transcriptional triggers in the dynamics of microbial growth: application to the respiratorily versatile bacterium Shewanella oneidensis. Nucleic Acids Research, 2012, 40, 7132-7149.	14.5	20
23	Predicting and characterizing selective multiple drug treatments for metabolicdiseases and cancer. BMC Systems Biology, 2012, 6, 115.	3.0	26
24	Multidimensional Optimality of Microbial Metabolism. Science, 2012, 336, 601-604.	12.6	360
25	A system-level approach for deciphering the transcriptional response to prion infection. Bioinformatics, 2011, 27, 3407-3414.	4.1	10
26	Gene expression profiling to identify druggable targets in prion diseases. Expert Opinion on Drug Discovery, 2010, 5, 177-202.	5.0	7
27	A computational procedure to identify significant overlap of differentially expressed and genomic imbalanced regions in cancer datasets â€. Nucleic Acids Research, 2009, 37, 5057-5070.	14.5	27
28	Investigating the Conformational Stability of Prion Strains through a Kinetic Replication Model. PLoS Computational Biology, 2009, 5, e1000420.	3.2	15
29	mRNA stability and the unfolding of gene expression in the long-period yeast metabolic cycle. BMC Systems Biology, 2009, 3, 18.	3.0	6
30	Discerning static and causal interactions in genome-wide reverse engineering problems. Bioinformatics, 2008, 24, 1510-1515.	4.1	31
31	Origin of Co-Expression Patterns in E.coli and S.cerevisiae Emerging from Reverse Engineering Algorithms. PLoS ONE, 2008, 3, e2981.	2.5	11