
Sansanee Noisakran

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6862822/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Melatonin Inhibits Dengue Virus Infection via the Sirtuin 1-Mediated Interferon Pathway. Viruses, 2021, 13, 659.	3.3	16
2	Potential Phosphorylation of Viral Nonstructural Protein 1 in Dengue Virus Infection. Viruses, 2021, 13, 1393.	3.3	5
3	Suppression of µ1 subunit of the adaptor protein complex 2 reduces dengue virus release. Virus Genes, 2020, 56, 27-36.	1.6	5
4	Peptides targeting dengue viral nonstructural protein 1 inhibit dengue virus production. Scientific Reports, 2020, 10, 12933.	3.3	21
5	Serine protease inhibitor AEBSF reduces dengue virus infection via decreased cholesterol synthesis. Virus Research, 2019, 271, 197672.	2.2	9
6	Inhibition of dengue virus replication in monocyte-derived dendritic cells by vivo-morpholino oligomers. Virus Research, 2019, 260, 123-128.	2.2	8
7	Coat protein complex I facilitates dengue virus production. Virus Research, 2018, 250, 13-20.	2.2	2
8	Vivo-morpholino oligomers strongly inhibit dengue virus replication and production. Archives of Virology, 2018, 163, 867-876.	2.1	8
9	Drug repurposing of quinine as antiviral against dengue virus infection. Virus Research, 2018, 255, 171-178.	2.2	50
10	Human glucose-regulated protein 78 modulates intracellular production and secretion of nonstructural protein 1 of dengue virus. Journal of General Virology, 2018, 99, 1391-1406.	2.9	12
11	Tyrosine kinase/phosphatase inhibitors decrease dengue virus production in HepG2 cells. Biochemical and Biophysical Research Communications, 2017, 483, 58-63.	2.1	11
12	JNK1/2 inhibitor reduces dengue virus-induced liver injury. Antiviral Research, 2017, 141, 7-18.	4.1	21
13	RNAi screen reveals a role of SPHK2 in dengue virus–mediated apoptosis in hepatic cell lines. PLoS ONE, 2017, 12, e0188121.	2.5	19
14	SB203580 Modulates p38 MAPK Signaling and Dengue Virus-Induced Liver Injury by Reducing MAPKAPK2, HSP27, and ATF2 Phosphorylation. PLoS ONE, 2016, 11, e0149486.	2.5	65
15	Mass spectrometric analysis of host cell proteins interacting with dengue virus nonstructural protein 1 in dengue virus-infected HepG2 cells. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2016, 1864, 1270-1280.	2.3	13
16	Drug repurposing of minocycline against dengue virus infection. Biochemical and Biophysical Research Communications, 2016, 478, 410-416.	2.1	32
17	Secreted NS1 Protects Dengue Virus from Mannose-Binding Lectin–Mediated Neutralization. Journal of Immunology, 2016, 197, 4053-4065.	0.8	64
18	Role of human heterogeneous nuclear ribonucleoprotein C1/C2 in dengue virus replication. Virology Journal, 2015, 12, 14.	3.4	49

SANSANEE NOISAKRAN

#	Article	IF	CITATIONS
19	Adaptor Protein 1A Facilitates Dengue Virus Replication. PLoS ONE, 2015, 10, e0130065.	2.5	5
20	Role of ERK1/2 signaling in dengue virus-induced liver injury. Virus Research, 2014, 188, 15-26.	2.2	33
21	Inhibition of p38MAPK and CD137 signaling reduce dengue virus-induced TNF-α secretion and apoptosis. Virology Journal, 2013, 10, 105.	3.4	27
22	Role of cathepsin B in dengue virus-mediated apoptosis. Biochemical and Biophysical Research Communications, 2013, 438, 20-25.	2.1	24
23	Compound A, a dissociated glucocorticoid receptor modulator, reduces dengue virus-induced cytokine secretion and dengue virus production. Biochemical and Biophysical Research Communications, 2013, 436, 283-288.	2.1	8
24	Interaction of dengue virus nonstructural protein 5 with Daxx modulates RANTES production. Biochemical and Biophysical Research Communications, 2012, 423, 398-403.	2.1	22
25	Role of CD61+ cells in thrombocytopenia of dengue patients. International Journal of Hematology, 2012, 96, 600-610.	1.6	32
26	Application of ImageJ program to the enumeration of Orientia tsutsugamushi organisms cultured in vitro. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2012, 106, 632-635.	1.8	18
27	Multiploid CD61+ Cells Are the Pre-Dominant Cell Lineage Infected during Acute Dengue Virus Infection in Bone Marrow. PLoS ONE, 2012, 7, e52902.	2.5	45
28	Infection of bone marrow cells by dengue virus inÂvivo. Experimental Hematology, 2012, 40, 250-259.e4.	0.4	66
29	Role of microparticles in dengue virus infection and its impact on medical intervention strategies. Yale Journal of Biology and Medicine, 2012, 85, 3-18.	0.2	24
30	Role of CD137 signaling in dengue virus-mediated apoptosis. Biochemical and Biophysical Research Communications, 2011, 410, 428-433.	2.1	20
31	Cell death gene expression profile: Role of RIPK2 in dengue virus-mediated apoptosis. Virus Research, 2011, 156, 25-34.	2.2	30
32	Frequency Alterations in Key Innate Immune Cell Components in the Peripheral Blood of Dengue Patients Detected by FACS Analysis. Journal of Innate Immunity, 2011, 3, 530-540.	3.8	48
33	Dengue virus–induced hemorrhage in a nonhuman primate model. Blood, 2010, 115, 1823-1834.	1.4	137
34	Cells in Dengue Virus Infection In Vivo. Advances in Virology, 2010, 2010, 1-15.	1.1	56
35	Human kidney anion exchanger 1 interacts with adaptor-related protein complex 1 μ1A (AP-1 mu1A). Biochemical and Biophysical Research Communications, 2010, 401, 85-91.	2.1	19
36	Nuclear localization of dengue virus capsid protein is required for DAXX interaction and apoptosis. Virus Research, 2010, 147, 275-283.	2.2	87

SANSANEE NOISAKRAN

#	Article	IF	CITATIONS
37	A Reâ€evaluation of the Mechanisms Leading to Dengue Hemorrhagic Fever. Annals of the New York Academy of Sciences, 2009, 1171, E24-35.	3.8	45
38	Interaction of dengue virus envelope protein with endoplasmic reticulum-resident chaperones facilitates dengue virus production. Biochemical and Biophysical Research Communications, 2009, 379, 196-200.	2.1	88
39	Detection of dengue virus in platelets isolated from dengue patients. Southeast Asian Journal of Tropical Medicine and Public Health, 2009, 40, 253-62.	1.0	59
40	Alternate Hypothesis on the Pathogenesis of Dengue Hemorrhagic Fever (DHF)/Dengue Shock Syndrome (DSS) in Dengue Virus Infection. Experimental Biology and Medicine, 2008, 233, 401-408.	2.4	67
41	Identification of human hnRNP C1/C2 as a dengue virus NS1-interacting protein. Biochemical and Biophysical Research Communications, 2008, 372, 67-72.	2.1	54
42	Association of dengue virus NS1 protein with lipid rafts. Journal of General Virology, 2008, 89, 2492-2500.	2.9	85
43	Differential Modulation of prM Cleavage, Extracellular Particle Distribution, and Virus Infectivity by Conserved Residues at Nonfurin Consensus Positions of the Dengue Virus pr-M Junction. Journal of Virology, 2008, 82, 10776-10791.	3.4	103
44	Sensitization to Fas-mediated apoptosis by dengue virus capsid protein. Biochemical and Biophysical Research Communications, 2007, 362, 334-339.	2.1	61
45	Proteomic Analysis of Host Responses in HepG2 Cells during Dengue Virus Infection. Journal of Proteome Research, 2007, 6, 4592-4600.	3.7	51
46	Characterization of dengue virus NS1 stably expressed in 293T cell lines. Journal of Virological Methods, 2007, 142, 67-80.	2.1	32
47	Vascular Leakage in Severe Dengue Virus Infections: A Potential Role for the Nonstructural Viral Protein NS1 and Complement. Journal of Infectious Diseases, 2006, 193, 1078-1088.	4.0	397
48	Trafficking defect of mutant kidney anion exchanger 1 (kAE1) proteins associated with distal renal tubular acidosis and Southeast Asian ovalocytosis. Biochemical and Biophysical Research Communications, 2006, 350, 723-730.	2.1	17
49	The Antiviral Efficacy of the Murine Alpha-1 Interferon Transgene against Ocular Herpes Simplex Virus Type 1 Requires the Presence of CD4+, î±/l² T-Cell Receptor-Positive T Lymphocytes with the Capacity To Produce Gamma Interferon. Journal of Virology, 2002, 76, 9398-9406.	3.4	20
50	ICAM-1 Is Required for Resistance to Herpes Simplex Virus Type 1 but Not Interferon-α1 Transgene Efficacy. Virology, 2001, 283, 69-77.	2.4	6
51	Type I Interferons and Herpes Simplex Virus Infection A Naked DNA Approach as a Therapeutic Option?. Immunologic Research, 2001, 24, 01-12.	2.9	15
52	Topical application of the cornea post-infection with plasmid DNA encoding interferon-α1 but not recombinant interferon-αA reduces herpes simplex virus type 1-induced mortality in mice. Journal of Neuroimmunology, 2001, 121, 49-58.	2.3	16
53	The Application of a Plasmid DNA Encoding IFN-α1 Postinfection Enhances Cumulative Survival of Herpes Simplex Virus Type 2 Vaginally Infected Mice. Journal of Immunology, 2001, 166, 1803-1812.	0.8	32
54	IFN-alpha1 Plasmid Construct Affords Protection Against HSV-1 Infection in Transfected L929 Fibroblasts. Journal of Interferon and Cytokine Research, 2000, 20, 107-115.	1.2	15

#	Article	IF	CITATIONS
55	Therapeutic efficacy of DNA encoding IFN-a1 against corneal HSV-1 infection. Current Eye Research, 2000, 20, 405-412.	1.5	24
56	Plasmid DNA Encoding IFN-α1 Antagonizes Herpes Simplex Virus Type 1 Ocular Infection Through CD4+ and CD8+ T Lymphocytes. Journal of Immunology, 2000, 164, 6435-6443.	0.8	37
57	Lymphocytes delay kinetics of HSV-1 reactivation from in vitro explants of latent infected trigeminal ganglia. Journal of Neuroimmunology, 1999, 95, 126-135.	2.3	16
58	The Relationship between Interleukin-6 and Herpes Simplex Virus Type 1: Implications for Behavior and Immunopathology. Brain, Behavior, and Immunity, 1999, 13, 201-211.	4.1	29
59	Cytokine and chemokine production in HSV-1 latently infected trigeminal ganglion cell cultures: Effects of hyperthermic stress. Journal of Neuroimmunology, 1998, 85, 111-121.	2.3	39
60	The persistent elevated cytokine mRNA levels in trigeminal ganglia of mice latently infected with HSV-1 are not due to the presence of latency associated transcript (LAT) RNAs. Virus Research, 1998, 54, 1-8.	2.2	9