
## Colin D Ingram

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/686217/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | A Digital Repository and Execution Platform for Interactive Scholarly Publications in Neuroscience.<br>Neuroinformatics, 2016, 14, 23-40.                                                                                          | 2.8 | 12        |
| 2  | Adaptive Changes in Basal and Stress-Induced HPA Activity in Lactating and Post-Lactating Female Rats.<br>Endocrinology, 2013, 154, 749-761.                                                                                       | 2.8 | 35        |
| 3  | Acute Glucocorticoid Administration Rapidly Suppresses Basal and Stress-Induced<br>Hypothalamo-Pituitary-Adrenal Axis Activity. Endocrinology, 2012, 153, 200-211.                                                                 | 2.8 | 33        |
| 4  | CARMEN: Code analysis, Repository and Modeling for e-Neuroscience. Procedia Computer Science, 2011, 4, 768-777.                                                                                                                    | 2.0 | 9         |
| 5  | Reduced stress responsiveness in pregnancy: Relationship with pattern of forebrain c-fos mRNA expression. Brain Research, 2010, 1358, 102-109.                                                                                     | 2.2 | 11        |
| 6  | The neurosteroid dehydroepiandrosterone (DHEA) and its metabolites alter 5-HT neuronal activity via modulation of GABAA receptors. Journal of Psychopharmacology, 2010, 24, 1717-1724.                                             | 4.0 | 33        |
| 7  | Fluoxetine inhibits corticotropin-releasing factor (CRF)-induced behavioural responses in rats.<br>Stress, 2009, 12, 225-239.                                                                                                      | 1.8 | 23        |
| 8  | Profound Changes in Dopaminergic Neurotransmission in the Prefrontal Cortex in Response to<br>Flattening of the Diurnal Glucocorticoid Rhythm: Implications for Bipolar Disorder.<br>Neuropsychopharmacology, 2009, 34, 2265-2274. | 5.4 | 31        |
| 9  | Glucocorticoid Receptor Antagonism Augments Fluoxetine-Induced Downregulation of the 5-HT<br>Transporter. Neuropsychopharmacology, 2009, 34, 399-409.                                                                              | 5.4 | 20        |
| 10 | Anxiety behaviour of the male rat on the elevated plus maze: associated regional increase<br>in <i>c-fos</i> mRNA expression and modulation by early maternal separation. Stress, 2009, 12, 362-369.                               | 1.8 | 41        |
| 11 | The progesterone metabolite allopregnanolone potentiates GABAA receptor-mediated inhibition of 5-HT neuronal activity. European Neuropsychopharmacology, 2007, 17, 108-115.                                                        | 0.7 | 35        |
| 12 | Glucocorticoid Receptor Antagonists Hasten and Augment Neurochemical Responses to a Selective<br>Serotonin Reuptake Inhibitor Antidepressant. Biological Psychiatry, 2007, 62, 1228-1235.                                          | 1.3 | 38        |
| 13 | Histamine controls food intake in sheep via H1 receptors. Small Ruminant Research, 2007, 70, 110-115.                                                                                                                              | 1.2 | 7         |
| 14 | Gonadal Steroid Modulation of Stress-Induced Hypothalamo-Pituitary-Adrenal Activity and Anxiety<br>Behavior: Role of Central Oxytocin. Endocrinology, 2006, 147, 2423-2431.                                                        | 2.8 | 86        |
| 15 | Differential excitatory responses to oxytocin in sub-divisions of the bed nuclei of the stria terminalis.<br>Neuropeptides, 2005, 39, 403-407.                                                                                     | 2.2 | 13        |
| 16 | Pathways transmitter interactions mediating an integrated stress response. Handbook of Behavioral<br>Neuroscience, 2005, 15, 609-639.                                                                                              | 0.0 | 0         |
| 17 | Oxytocin-induced excitation of neurones in the rat central and medial amygdaloid nuclei.<br>Neuroscience, 2005, 134, 345-354.                                                                                                      | 2.3 | 66        |
| 18 | Moderate differences in circulating corticosterone alter receptor-mediated regulation of<br>5-hydroxytryptamine neuronal activity. Journal of Psychopharmacology, 2004, 18, 475-483.                                               | 4.0 | 9         |

COLIN D INGRAM

| #  | Article                                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Moderate differences in circulating corticosterone alter receptor-mediated regulation of 5-hydroxytryptamine neuronal activity. Journal of Psychopharmacology, 2004, 18, 475-483.                                                                                                | 4.0 | 26        |
| 20 | Gonadectomy Reverses The Sexually Diergic Patterns Of Circadian and Stress-Induced<br>Hypothalamic-Pituitary-Adrenal Axis Activity In Male and Female Rats. Journal of Neuroendocrinology,<br>2004, 16, 516-524.                                                                 | 2.6 | 206       |
| 21 | Oxytocin Attenuates Stress-Induced c- <i>fos</i> mRNA Expression in Specific Forebrain Regions<br>Associated with Modulation of Hypothalamo–Pituitary–Adrenal Activity. Journal of Neuroscience,<br>2004, 24, 2974-2982.                                                         | 3.6 | 381       |
| 22 | GABA receptor modulation of 5-HT neuronal firing: characterization and effect of moderate in vivo variations in glucocorticoid levels. Neurochemistry International, 2004, 45, 1057-1065.                                                                                        | 3.8 | 31        |
| 23 | Early life adversity programs changes in central 5â€HT neuronal function in adulthood. European<br>Journal of Neuroscience, 2003, 17, 2401-2408.                                                                                                                                 | 2.6 | 82        |
| 24 | Anatomical and functional evidence for a stress-responsive, monoamine-accumulating area in the dorsomedial hypothalamus of adult rat brain. Hormones and Behavior, 2003, 43, 254-262.                                                                                            | 2.1 | 49        |
| 25 | Acute and chronic effects of corticosterone on 5-HT1A receptor-mediated autoinhibition in the rat dorsal raphe nucleus. Neuropharmacology, 2003, 45, 925-934.                                                                                                                    | 4.1 | 81        |
| 26 | Flattening the Corticosterone Rhythm Attenuates 5-HT1A Autoreceptor Function in the Rat: Relevance for Depression. Neuropsychopharmacology, 2003, 28, 119-125.                                                                                                                   | 5.4 | 83        |
| 27 | Hypothalamic-Pituitary-Adrenal Function. Archives of Physiology and Biochemistry, 2002, 110, 90-93.                                                                                                                                                                              | 2.1 | 74        |
| 28 | 5-HT1A receptor-mediated autoinhibition does not function at physiological firing rates: evidence<br>from in vitro electrophysiological studies in the rat dorsal raphe nucleus. Neuropharmacology, 2002,<br>43, 959-965.                                                        | 4.1 | 37        |
| 29 | Habituation and Crossâ€Sensitization of Stressâ€Induced Hypothalamicâ€Pituitaryâ€Adrenal Activity: Effect of<br>Lesions in the Paraventricular Nucleus of the Thalamus or Bed Nuclei of the Stria Terminalis. Journal<br>of Neuroendocrinology, 2002, 14, 593-602.               | 2.6 | 59        |
| 30 | New genomic avenues in behavioural neuroendocrinology *. European Journal of Neuroscience, 2002, 16, 369-372.                                                                                                                                                                    | 2.6 | 12        |
| 31 | The neuroendocrine-behaviour interface in the post-genome era. European Journal of Neuroscience, 2002, 16, 367-367.                                                                                                                                                              | 2.6 | 0         |
| 32 | Chapter 1 Brain preparations for maternity — adaptive changes in behavioral and neuroendocrine systems during pregnancy and lactation. An overview. Progress in Brain Research, 2001, 133, 1-38.                                                                                 | 1.4 | 171       |
| 33 | Hypothalamic and amygdaloid corticotropin-releasing hormone (CRH) and CRH receptor-1 mRNA expression in the stress-hyporesponsive late pregnant and early lactating rat. Molecular Brain Research, 2001, 91, 119-130.                                                            | 2.3 | 76        |
| 34 | Increased Corticosterone Pulse Frequency During Adjuvant-Induced Arthritis and its Relationship to Alterations in Stress Responsiveness. Journal of Neuroendocrinology, 2001, 13, 905-911.                                                                                       | 2.6 | 96        |
| 35 | Chapter 8 Peripartum plasticity within the hypothalamo-pituitary-adrenal axis. Progress in Brain Research, 2001, 133, 111-129.                                                                                                                                                   | 1.4 | 148       |
| 36 | Corticotropin-Releasing Factor Increases <i>In Vitro</i> Firing Rates of Serotonergic Neurons in the<br>Rat Dorsal Raphe Nucleus: Evidence for Activation of a Topographically Organized Mesolimbocortical<br>Serotonergic System. Journal of Neuroscience, 2000, 20, 7728-7736. | 3.6 | 204       |

COLIN D INGRAM

| #  | Article                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Early-life exposure to endotoxin alters hypothalamic–pituitary–adrenal function and predisposition<br>to inflammation. Proceedings of the National Academy of Sciences of the United States of America,<br>2000, 97, 5645-5650. | 7.1 | 331       |
| 38 | Chronic Iodine Deprivation Attenuates Stressâ€Induced and Diurnal Variation in Corticosterone<br>Secretion in Female Wistar Rats. Journal of Neuroendocrinology, 2000, 12, 1149-1159.                                           | 2.6 | 16        |
| 39 | Differential Effects of Psychological and Immunological Challenge on the<br>Hypothalamo-Pituitary-Adrenal Axis Function in Adjuvant-induced Arthritisa. Annals of the New York<br>Academy of Sciences, 1999, 876, 43-52.        | 3.8 | 34        |
| 40 | Localisation of phosphatidylethanolamine-binding protein in the brain and other tissues of the rat.<br>Cell and Tissue Research, 1999, 298, 415-423.                                                                            | 2.9 | 69        |
| 41 | Effect of gonadal steroids on the oxytocin-induced excitation of neurons in the bed nuclei of the stria terminalis at parturition in the rat. Neuroscience, 1999, 91, 1117-1127.                                                | 2.3 | 14        |
| 42 | Chronic treatment with oestradiol does not alter in vitro LTP in subfield CA1 of the female rat hippocampus. Neuropharmacology, 1999, 38, 65-71.                                                                                | 4.1 | 18        |
| 43 | Hypothalamo–Pituitary–Adrenal Axis Responses to Lipopolysaccharide in Male and Female Rats with<br>Adjuvant-Induced Arthritis. Brain, Behavior, and Immunity, 1999, 13, 335-347.                                                | 4.1 | 25        |
| 44 | The Hypothalamicâ€Pituitaryâ€Adrenal Axis Response to Endotoxin is Attenuated During Lactation. Journal of Neuroendocrinology, 1999, 11, 857-865.                                                                               | 2.6 | 85        |
| 45 | Evidence for independent hypertensive effects of oxytocin and vasopressin in the rat dorsal vagal complex. Neuroscience Research, 1997, 27, 285-288.                                                                            | 1.9 | 7         |
| 46 | Pharmacological characterisation of oxytocin binding sites in the ovine pineal gland. Regulatory<br>Peptides, 1997, 70, 23-27.                                                                                                  | 1.9 | 5         |
| 47 | Region-specific immediate-early gene expression following the administration of corticotropin-releasing hormone in virgin and lactating rats. Brain Research, 1997, 770, 151-162.                                               | 2.2 | 51        |
| 48 | Endocrine and Behavioural Responses to Noise Stress:Comparison of Virgin and Lactating Female<br>Ratsduring Nonâ€Disrupted Maternal Activity. Journal of Neuroendocrinology, 1997, 9, 407-414.                                  | 2.6 | 208       |
| 49 | Endogenous opioid control of somatodendritic oxytocin release from the hypothalamic supraoptic and paraventricular nuclei in vitro. Neuroscience Research, 1996, 25, 17-24.                                                     | 1.9 | 16        |
| 50 | Circadian rhythm of neuronal activity in suprachiasmatic nucleus slices from the vasopressin-deficient Brattleboro rat. Neuroscience, 1996, 75, 635-641.                                                                        | 2.3 | 53        |
| 51 | Characterisation of vasopressin V1a binding sites in the ovine olfactory bulb. Neuroscience Letters, 1996, 220, 33-36.                                                                                                          | 2.1 | 2         |
| 52 | Region-specific reduction in stress-induced c- fos mRNA expression during pregnancy and lactation.<br>Brain Research, 1996, 742, 177-184.                                                                                       | 2.2 | 130       |
| 53 | Electrical recordings of magnocellular supraoptic and paraventricular neurons displaying both oxytocin- and vasopressin-related activity. Brain Research, 1995, 669, 309-314.                                                   | 2.2 | 28        |
| 54 | A combined immunocytochemical and retrograde tracing study of noradrenergic connections<br>between the caudal medulla and bed nuclei of the stria terminalis. Brain Research, 1995, 672, 289-297.                               | 2.2 | 44        |

COLIN D INGRAM

| #  | Article                                                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | [Arg8]Vasotocin Excites Neurones in the Dorsal Vagal Complex in vitro: Evidence for an Action through Novel Class(es) of CNS Receptors. Journal of Neuroendocrinology, 1994, 6, 415-422.                                                                          | 2.6 | 17        |
| 56 | The effects of [arg8]vasopressin and [ARG8]vasotocin on the firing rate of suprachiasmatic neuronsin vitro. Neuroscience, 1994, 62, 783-792.                                                                                                                      | 2.3 | 45        |
| 57 | Suppression of suprachiasmatic nucleus neurone activity with a vasopressin receptor antagonist:<br>possible role for endogenous vasopressin in circadian activity cycles in vitro. Neuroscience Letters,<br>1994, 179, 95-99.                                     | 2.1 | 35        |
| 58 | Post-partum increase in oxytocin-induced excitation of neurones in the bed nuclei of the stria terminalis in vitro. Brain Research, 1993, 602, 325-330.                                                                                                           | 2.2 | 38        |
| 59 | Electrophysiological actions of oxytocin in the dorsal vagal complex of the female rat in vitro:<br>changing responsiveness during the oestrous cycle and after steroid treatment. Brain Research, 1993,<br>609, 21-28.                                           | 2.2 | 23        |
| 60 | Electrical activity of neurons in the ventrolateral septum and bed nuclei of the stria terminalis in suckled rats: Statistical analysis gives evidence for sensitivity to oxytocin and for relation to the milk-ejection reflex. Neuroscience, 1993, 54, 361-376. | 2.3 | 35        |
| 61 | Oxytocin-containing pathway to the bed nuclei of the stria terminalis of the lactating rat brain:<br>Immunocytochemical and in vitro electrophysiological evidence. Neuroscience, 1992, 47, 439-452.                                                              | 2.3 | 54        |
| 62 | Oxytocin in the Bed Nucleus of the Stria Terminalis and Lateral Septum Facilitates Bursting of<br>Hypothalamic Oxytocin Neurons in Suckled Rats. Journal of Neuroendocrinology, 1991, 3, 163-171.                                                                 | 2.6 | 53        |
| 63 | Role of the paraventricular nucleus in controlling the frequency of milk ejection and the facilitatory<br>effect of centrally administered oxytocin in the suckled rat. Journal of Endocrinology, 1990, 125,<br>467-NP.                                           | 2.6 | 14        |
| 64 | Oxytocin excites neurones in the bed nucleus of the stria terminalis of the lactating rat in vitro.<br>Brain Research, 1990, 527, 167-170.                                                                                                                        | 2.2 | 46        |
| 65 | Effect of Centrally Administered Oxytocin on the Association Between Cortical<br>Electroencephalogram and Milk Ejection in the Rat. Journal of Neuroendocrinology, 1989, 1, 173-178.                                                                              | 2.6 | 9         |
| 66 | Morphological characterisation of lactotrophs separated from the bovine pituitary by a rapid enrichment technique. Cell and Tissue Research, 1988, 252, 655-659.                                                                                                  | 2.9 | 21        |
| 67 | Oxytocin release evoked by electrical stimulation of the medial forebrain in the rat: Analysis of stimulus parameters and supraoptic neuronal activity. Neuroscience, 1988, 27, 597-605.                                                                          | 2.3 | 8         |
| 68 | Stress-induced disruption of parturition in the rat may be mediated by endogenous opioids. Journal of Endocrinology, 1987, 114, 247-252.                                                                                                                          | 2.6 | 56        |
| 69 | Sodium and potassium currents involved in action potential propagation in normal bovine lactotrophs Journal of Physiology, 1987, 392, 273-299.                                                                                                                    | 2.9 | 38        |
| 70 | Voltage-activated currents through calcium channels in normal bovine lactotrophs. Neuroscience, 1987, 23, 661-677.                                                                                                                                                | 2.3 | 21        |
| 71 | Synergistic interaction in bovine pituitary cultures between growth hormone-releasing factor and other hypophysiotrophic factors. Journal of Endocrinology, 1986, 109, 67-74.                                                                                     | 2.6 | 23        |
| 72 | Central opioids: a possible role in parturition?. Journal of Endocrinology, 1985, 106, 219-224.                                                                                                                                                                   | 2.6 | 53        |

| #  | Article                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Oxytocin release is inhibited by opiates from the neural lobe, not those from the intermediate lobe.<br>Neuroscience Letters, 1983, 43, 227-230. | 2.1 | 39        |
| 74 | Rapid Fatigue of Neuropeptide Secretion during Continual Electrical Stimulation.<br>Neuroendocrinology, 1982, 35, 424-428.                       | 2.5 | 28        |