
Jesús A GarcÃ-a-Sevilla

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/68617/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Protection by imidazol(ine) drugs and agmatine of glutamate-induced neurotoxicity in cultured cerebellar granule cells through blockade of NMDA receptor. British Journal of Pharmacology, 1999, 127, 1317-1326.	5.4	154
2	Upâ€Regulation of Immunolabeled α _{2A} â€Adrenoceptors,G _i Coupling Proteins, and Regulatory Receptor Kinases in the Prefrontal Cortex of Depressed Suicides. Journal of Neurochemistry, 1999, 72, 282-291.	3.9	139
3	Chronic morphine induces upâ€regulation of the proâ€apoptotic Fas receptor and downâ€regulation of the antiâ€apoptotic Bclâ€2 oncoprotein in rat brain. British Journal of Pharmacology, 2001, 134, 1263-1270.	5.4	124
4	Selective Increase of α _{2A} â€Adrenoceptor Agonist Binding Sites in Brains of Depressed Suicide Victims. Journal of Neurochemistry, 1998, 70, 1114-1123.	3.9	118
5	Opposite Age-Dependent Changes of ?2A-Adrenoceptors and Nonadrenoceptor [3H]Idazoxan Binding Sites (I2-Imidazoline Sites) in the Human Brain: Strong Correlation of I2with Monoamine Oxidase-B Sites. Journal of Neurochemistry, 1993, 61, 881-889.	3.9	103
6	Autoradiographic Demonstration of Increased α ₂ â€Adrenoceptor Agonist Binding Sites in the Hippocampus and Frontal Cortex of Depressed Suicide Victims. Journal of Neurochemistry, 1994, 63, 256-265.	3.9	85
7	Activation of I2 -imidazoline receptors enhances supraspinal morphine analgesia in mice: a model to detect agonist and antagonist activities at these receptors. British Journal of Pharmacology, 2000, 130, 146-152.	5.4	83
8	Attenuation of tolerance to opioid-induced antinociception and protection against morphine-induced decrease of neurofilament proteins by idazoxan and other I2 -imidazoline ligands. British Journal of Pharmacology, 1998, 125, 175-185.	5.4	81
9	Inhibition of monoamine oxidase A and B activities by imidazol(ine)/guanidine drugs, nature of the interaction and distinction from I2 -imidazoline receptors in rat liver. British Journal of Pharmacology, 1997, 121, 901-912.	5.4	79
10	Chronic treatment with the monoamine oxidase inhibitors clorgyline and pargyline downâ€regulates nonâ€adrenoceptor [³ H]â€idazoxan binding sites in the rat brain. British Journal of Pharmacology, 1993, 108, 597-603.	5.4	72
11	μ-Opioid receptor and α2-adrenoceptor agonist binding sites in the postmortem brain of heroin addicts. Psychopharmacology, 1994, 115, 135-140.	3.1	71
12	Imidazoline Receptor System: The Past, the Present, and the Future. Pharmacological Reviews, 2020, 72, 50-79.	16.0	71
13	Imidazoline Receptors and Human Brain Disordersa. Annals of the New York Academy of Sciences, 1999, 881, 392-409.	3.8	70
14	The effects of chronic imidazoline drug treatment on glial fibrillary acidic protein concentrations in rat brain. British Journal of Pharmacology, 1994, 111, 997-1002.	5.4	65
15	α ₂ â€Adrenoceptor Subtypes Identified by [³ H]RX821002 Binding in the Human Brain: The Agonist Guanoxabenz Does Not Discriminate Different Forms of the Predominant α _{2A} Subtype. Journal of Neurochemistry, 1994, 63, 1077-1085.	3.9	55
16	The effects of phenelzine and other monoamine oxidase inhibitor antidepressants on brain and liver I ₂ imidazolineâ€preferring receptors. British Journal of Pharmacology, 1995, 114, 837-845.	5.4	54
17	Decreased density of I2- imidazoline receptors in the postmortem brains of heroin addicts. NeuroReport, 1996, 7, 509-512.	1.2	49
18	Modulation of immunoreactive protein kinase C-α and β isoforms and G proteins by acute and chronic treatments with morphine and other opiate drugs in rat brain. Naunyn-Schmiedeberg's Archives of Pharmacology, 1997, 355, 491-500.	3.0	49

#	Article	IF	CITATIONS
19	Downregulation of Neuronal cdk5/p35 in Opioid Addicts and Opiate-Treated Rats: Relation to Neurofilament Phosphorylation. Neuropsychopharmacology, 2003, 28, 947-955.	5.4	47
20	Labelling of I2B-imidazoline receptors by [3H]2-(2-benzofuranyl)-2-imidazoline (2-BFI) in rat brain and liver: characterization, regulation and relation to monoamine oxidase enzymes. Naunyn-Schmiedeberg's Archives of Pharmacology, 1997, 356, 39-47.	3.0	46
21	Loss of Protein Kinase C-Î \pm β in Brain of Heroin Addicts and Morphine-Dependent Rats. Journal of Neurochemistry, 2002, 64, 247-252.	3.9	44
22	Regulation of Platelet α2A-Adrenoceptors, Gi Proteins and Receptor Kinases in Major Depression: Effects of Mirtazapine Treatment. Neuropsychopharmacology, 2004, 29, 580-588.	5.4	44
23	Decreased immunodensities of μ-opioid receptors, receptor kinases GRK 2/6 and β-arrestin-2 in postmortem brains of opiate addicts. Molecular Brain Research, 2004, 121, 114-122.	2.3	43
24	Pharmacological modulation of immunoreactive imidazoline receptor proteins in rat brain: relationship with nonâ€adrenoceptor [³ H]â€idazoxan binding sites. British Journal of Pharmacology, 1996, 118, 2029-2036.	5.4	35
25	Increased α2- and β1-adrenoceptor densities in postmortem brain of subjects with depression: Differential effect of antidepressant treatment. Journal of Affective Disorders, 2014, 167, 343-350.	4.1	34
26	Pharmacologic Characterization of Imidazoline Receptor Proteins Identified by Immunologic Techniques and Other Methodsa. Annals of the New York Academy of Sciences, 1999, 881, 8-25.	3.8	30
27	Induction of reactive astrocytosis and prevention of motoneuron cell death by the I2 -imidazoline receptor ligand LSL 60101. British Journal of Pharmacology, 2000, 130, 1767-1776.	5.4	28
28	Reduced platelet G protein-coupled receptor kinase 2 in major depressive disorder: Antidepressant treatment-induced upregulation of GRK2 protein discriminates between responder and non-responder patients. European Neuropsychopharmacology, 2010, 20, 721-730.	0.7	28
29	Differential Effects of the Alkylating Agent N-Ethoxycarbonyl-2-Ethoxy-1,2-Dihydroquinoline on Brain ?2-Adrenoceptors and I2-Imidazoline Sites In Vitro and In Vivo. Journal of Neurochemistry, 1993, 61, 1602-1610.	3.9	26
30	Effects of anti-depressant treatments on FADD and p-FADD protein in rat brain cortex: enhanced anti-apoptotic p-FADD/FADD ratio after chronic desipramine and fluoxetine administration. Psychopharmacology, 2016, 233, 2955-2971.	3.1	24
31	Neuroprotective Effects of a Structurally New Family of High Affinity Imidazoline I ₂ Receptor Ligands. ACS Chemical Neuroscience, 2017, 8, 737-742.	3.5	24
32	Pharmacologic and Molecular Discrimination of I2-Imidazoline Receptor Subtypesa. Annals of the New York Academy of Sciences, 1999, 881, 144-160.	3.8	23
33	Brain α2 -adrenoceptors in monoamine-depleted rats: increased receptor density, G coupling proteins, receptor turnover and receptor mRNA. British Journal of Pharmacology, 2001, 132, 1467-1476.	5.4	23
34	Parallel modulation of receptor for activated C kinase 1 and protein kinase C-α and β isoforms in brains morphine-treated rats. British Journal of Pharmacology, 1999, 127, 343-348.	of 5.4	22
35	Behavioral and Cognitive Improvement Induced by Novel Imidazoline I2 Receptor Ligands in Female SAMP8 Mice. Neurotherapeutics, 2019, 16, 416-431.	4.4	22
36	Spontaneous Withdrawal from Long-Term Treatment with Morphine Accelerates the Turnover of α2-Adrenoceptors in the Rat Brain: Up-Regulation of Receptors Associated with Increased Receptor Appearance. Journal of Neurochemistry, 2002, 64, 2590-2597.	3.9	16

#	Article	IF	CITATIONS
37	Acceleration by chronic treatment with clorgyline of the turnover of brain α ₂ â€adrenoceptors in normotensive but not in spontaneously hypertensive rats. British Journal of Pharmacology, 1993, 110, 99-106.	5.4	14
38	Functional activation of Gαq coupled to 5-HT2A receptor and M1 muscarinic acetylcholine receptor in postmortem human cortical membranes. Journal of Neural Transmission, 2017, 124, 1123-1133.	2.8	13
39	Attenuation of Tolerance to Opioid-Induced Antinociception by Idazoxan and Other I2-Ligandsa. Annals of the New York Academy of Sciences, 1999, 881, 359-363.	3.8	12
40	Monoamine receptor agonists, acting preferentially at presynaptic autoreceptors and heteroreceptors, downregulate the cell fate adaptor FADD in rat brain cortex. Neuropharmacology, 2015, 89, 204-214.	4.1	11
41	Upregulation of IRAS/nischarin (I 1 -imidazoline receptor), a regulatory protein of μ-opioid receptor trafficking, in postmortem prefrontal cortex of long-term opiate and mixed opiate/cocaine abusers. Neurochemistry International, 2017, 108, 282-286.	3.8	11
42	Ketamine-induced hypnosis and neuroplasticity in mice is associated with disrupted p-MEK/p-ERK sequential activation and sustained upregulation of survival p-FADD in brain cortex: Involvement of GABAA receptor. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2019, 88, 121-131.	4.8	11
43	Isothiocyanatobenzyl imidazoline is an alkylating agent for I2-imidazoline binding sites in rat and rabbit tissues. Naunyn-Schmiedeberg's Archives of Pharmacology, 1998, 357, 351-355.	3.0	10
44	Inhibitory effects of imidazoline receptor ligands on basal and kainic acid-induced neurotoxic signalling in mice. Journal of Psychopharmacology, 2016, 30, 875-886.	4.0	10
45	Repeated Idazoxan Increases Brain Imidazoline Receptors in Normotensive (WKY) but Not in Hypertensive (SHR) Rats. Journal of Neurochemistry, 1991, 57, 1811-1813.	3.9	8
46	Enhanced α 2A -autoreceptor reserve for clonidine induced by reserpine and cholinomimetic agents in the rat vas deferens. British Journal of Pharmacology, 1997, 122, 833-840.	5.4	8
47	Adenosine A1 receptors are selectively coupled to Gαi-3 in postmortem human brain cortex: Guanosine-5′-O-(3-[35S]thio)triphosphate ([35S]GTPγS) binding/immunoprecipitation study. European Journal of Pharmacology, 2015, 764, 592-598.	3.5	8
48	Functional coupling of M1 muscarinic acetylcholine receptor to Gαq/11 in dorsolateral prefrontal cortex from patients with psychiatric disorders: a postmortem study. European Archives of Psychiatry and Clinical Neuroscience, 2020, 270, 869-880.	3.2	8
49	5-HT _{2A} receptor-mediated Gα _{q/11} activation in psychiatric disorders: A postmortem study. World Journal of Biological Psychiatry, 2021, 22, 505-515.	2.6	8
50	Regulation of cannabinoid CB1 and CB2 receptors, neuroprotective mTOR and pro-apoptotic JNK1/2 kinases in postmortem prefrontal cortex of subjects with major depressive disorder. Journal of Affective Disorders, 2020, 276, 626-635.	4.1	8
51	Up-regulated 14-3-3β and 14-3-3ζ proteins in prefrontal cortex of subjects with schizophrenia: effect of psychotropic treatment. Schizophrenia Research, 2015, 161, 446-451.	2.0	7
52	Alpha2C-adrenoceptor Del322-325 polymorphism and risk of psychiatric disorders: significant association with opiate abuse and dependence. World Journal of Biological Psychiatry, 2016, 17, 308-315.	2.6	7
53	Chronic Clorgyline Induces Selective Down-Regulation of alpha2-Adrenoceptor Agonist Binding Sites in Rat Brain. Basic and Clinical Pharmacology and Toxicology, 2000, 87, 269-275.	0.0	6
54	In Vivo Effects of the I2-Alkylating Agent BU99006 on the Immunodensity of Imidazoline Receptor Proteins in the Mouse Brain. Annals of the New York Academy of Sciences, 2003, 1009, 323-331.	3.8	5

#	ARTICLE	IF	CITATIONS
55	Disruption of brain MEK-ERK sequential phosphorylation and activation during midazolam-induced hypnosis in mice: Roles of GABA A receptor, MEK1 inactivation, and phosphatase MKP-3. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2017, 75, 84-93.	4.8	5
56	Effects of I 2 -imidazoline receptor (IR) alkylating BU99006 in the mouse brain: Upregulation of nischarin/I 1 -IR and μ-opioid receptor proteins and modulation of associated signalling pathways. Neurochemistry International, 2017, 108, 169-176.	3.8	5
57	Pentobarbital and other anesthetic agents induce opposite regulations of MAP kinases p-MEK and p-ERK, and upregulate p-FADD/FADD neuroplastic index in brain during hypnotic states in mice. Neurochemistry International, 2019, 122, 59-72.	3.8	5
58	Modulation by central postsynaptic α ₂ â€adrenoceptors of the jawâ€opening reflex induced by orofacial stimulation in rats. British Journal of Pharmacology, 1994, 111, 1140-1146.	5.4	4
59	Optimization and pharmacological characterization of receptorâ€mediated G i/o activation in postmortem human prefrontal cortex. Basic and Clinical Pharmacology and Toxicology, 2019, 124, 649-659.	2.5	4
60	5-HT2A receptor- and M1 muscarinic acetylcholine receptor-mediated activation of Gαq/11 in postmortem dorsolateral prefrontal cortex of opiate addicts. Pharmacological Reports, 2021, 73, 1155-1163.	3.3	4
61	Densities of I2-Imidazoline Receptors, Imidazoline Receptor Proteins, and MAO-B Sites in Human Gliomas and Pituitary Adenomasa. Annals of the New York Academy of Sciences, 1999, 881, 203-207.	3.8	2
62	Functional coupling between adenosine A1 receptors and G-proteins in rat and postmortem human brain membranes determined with conventional guanosine-5â€2-O-(3-[35S]thio)triphosphate ([35S]GTPÎ3S) binding or [35S]GTPÎ3S/immunoprecipitation assay. Purinergic Signalling, 2018, 14, 177-190.	2.2	2
63	Fundamental features of receptor-mediated Gαi/o activation in human prefrontal cortical membranes: A postmortem study. Brain Research, 2020, 1747, 147032.	2.2	0
64	Histamine H ₃ receptor-mediated C-protein activation in postmortem human prefrontal cortical membranes. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO1-1-132.	0.0	0
65	Novel Imidazoline I ₂ Receptor Ligands for Alzheimer's Disease. FASEB Journal, 2018, 32, 552.1.	0.5	0
66	A New Family of Imidazoline I 2 Receptor Ligands Improves Behavior and Cognition in SAMP8 Mice. FASEB Journal, 2019, 33, 806.19.	0.5	0