
Young-Kook Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/686163/publications.pdf Version: 2024-02-01

YOUNG-KOOK KIM

#	Article	IF	CITATIONS
1	Circular RNA circSmoc1-2 regulates vascular calcification by acting as a miR-874-3p sponge in vascular smooth muscle cells. Molecular Therapy - Nucleic Acids, 2022, 27, 645-655.	5.1	15
2	Long Noncoding RNAs Regulate Hyperammonemia-Induced Neuronal Damage in Hepatic Encephalopathy. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-13.	4.0	6
3	RNA therapy: rich history, various applications and unlimited future prospects. Experimental and Molecular Medicine, 2022, 54, 455-465.	7.7	92
4	The roles of non-coding RNAs in vascular calcification and opportunities as therapeutic targets. , 2021, 218, 107675.		43
5	SRF is a nonhistone methylation target of KDM2B and SET7 in the regulation of skeletal muscle differentiation. Experimental and Molecular Medicine, 2021, 53, 250-263.	7.7	8
6	MicroRNAs Related to Cognitive Impairment After Hearing Loss. Clinical and Experimental Otorhinolaryngology, 2021, 14, 76-81.	2.1	8
7	Animal models for the study of depressive disorder. CNS Neuroscience and Therapeutics, 2021, 27, 633-642.	3.9	30
8	Role of microRNAâ€ʿ375â€ʿ3pâ€ʿmediated regulation in tinnitus development. International Journal of Molecular Medicine, 2021, 48, .	4.0	4
9	Targeting non-coding RNAs for the treatment of retinal diseases. Molecular Therapy - Nucleic Acids, 2021, 24, 284-293.	5.1	11
10	The regulatory impact of RNA-binding proteins on microRNA targeting. Nature Communications, 2021, 12, 5057.	12.8	54
11	P300/CBP-Associated Factor Activates Cardiac Fibroblasts by SMAD2 Acetylation. International Journal of Molecular Sciences, 2021, 22, 9944.	4.1	10
12	Obesity-linked circular RNA circTshz2-2 regulates the neuronal cell cycle and spatial memory in the brain. Molecular Psychiatry, 2021, 26, 6350-6364.	7.9	10
13	Regulation of MDM2 E3 ligase-dependent vascular calcification by MSX1/2. Experimental and Molecular Medicine, 2021, 53, 1781-1791.	7.7	2
14	Glucagon-like peptide-1 suppresses neuroinflammation and improves neural structure. Pharmacological Research, 2020, 152, 104615.	7.1	42
15	Characterization of Circular RNAs in Vascular Smooth Muscle Cells with Vascular Calcification. Molecular Therapy - Nucleic Acids, 2020, 19, 31-41.	5.1	32
16	Identification of Long Noncoding RNAs Involved in Differentiation and Survival of Vascular Smooth Muscle Cells. Molecular Therapy - Nucleic Acids, 2020, 22, 209-221.	5.1	15
17	The microRNA <i>miRâ€134â€5p</i> induces calcium deposition by inhibiting histone deacetylase 5 in vascular smooth muscle cells. Journal of Cellular and Molecular Medicine, 2020, 24, 10542-10550.	3.6	7
18	Comprehensive evaluation of differentially expressed non-coding RNAs identified during macrophage activation. Molecular Immunology, 2020, 128, 98-105.	2.2	2

YOUNG-КООК КІМ

#	Article	IF	CITATIONS
19	miR-27a-3p Targets ATF3 to Reduce Calcium Deposition in Vascular Smooth Muscle Cells. Molecular Therapy - Nucleic Acids, 2020, 22, 627-639.	5.1	22
20	Roles of Histone Acetylation Modifiers and Other Epigenetic Regulators in Vascular Calcification. International Journal of Molecular Sciences, 2020, 21, 3246.	4.1	16
21	Discovery and Functional Prediction of Long Non-Coding RNAs Common to Ischemic Stroke and Myocardial Infarction. Journal of Lipid and Atherosclerosis, 2020, 9, 449.	3.5	10
22	RNA Therapy: Current Status and Future Potential. Chonnam Medical Journal, 2020, 56, 87.	0.9	64
23	Diverse roles of noncoding RNAs in vascular calcification. Archives of Pharmacal Research, 2019, 42, 244-251.	6.3	21
24	Transcriptomic Analysis of High Fat Diet Fed Mouse Brain Cortex. Frontiers in Genetics, 2019, 10, 83.	2.3	37
25	Long noncoding RNAs in vascular smooth muscle cells regulate vascular calcification. Scientific Reports, 2019, 9, 5848.	3.3	25
26	Inhibition of heat shock protein 70 blocks the development of cardiac hypertrophy by modulating the phosphorylation of histone deacetylase 2. Cardiovascular Research, 2019, 115, 1850-1860.	3.8	23
27	Transcriptome Analysis of Pineal Glands in the Mouse Model of Alzheimer's Disease. Frontiers in Molecular Neuroscience, 2019, 12, 318.	2.9	8
28	Analysis of Circular RNAs in the Coronary Arteries of Patients with Kawasaki Disease. Journal of Lipid and Atherosclerosis, 2019, 8, 50.	3.5	7
29	Connexin43 and zonula occludens-1 are targets of Akt in cardiomyocytes that correlate with cardiac contractile dysfunction in Akt deficient hearts. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 1183-1191.	3.8	19
30	Sumoylation of histone deacetylase 1 regulates MyoD signaling during myogenesis. Experimental and Molecular Medicine, 2018, 50, e427-e427.	7.7	14
31	The Glymphatic System in Diabetes-Induced Dementia. Frontiers in Neurology, 2018, 9, 867.	2.4	28
32	The Role of Long Noncoding RNAs in Diabetic Alzheimer's Disease. Journal of Clinical Medicine, 2018, 7, 461.	2.4	8
33	Thyrocyteâ€specific deletion of insulin and IGFâ€1 receptors induces papillary thyroid carcinomaâ€like lesions through EGFR pathway activation. International Journal of Cancer, 2018, 143, 2458-2469.	5.1	10
34	PP2A negatively regulates the hypertrophic response by dephosphorylating HDAC2 S394 in the heart. Experimental and Molecular Medicine, 2018, 50, 1-14.	7.7	22
35	Identification of long noncoding RNAs involved in muscle differentiation. PLoS ONE, 2018, 13, e0193898.	2.5	23
36	The micro <scp>RNA </scp> <i>miRâ€124</i> inhibits vascular smooth muscle cell proliferation by targeting S100 calciumâ€binding protein A4 (S100A4). FEBS Letters, 2017, 591, 1041-1052.	2.8	40

YOUNG-КООК КІМ

#	Article	IF	CITATIONS
37	Knockout of miR-221 and miR-222 reveals common and specific targets for paralogous miRNAs. RNA Biology, 2017, 14, 197-205.	3.1	11
38	MicroRNAs 218a-5p, 219a-5p, and 221-3p regulate vestibular compensation. Scientific Reports, 2017, 7, 8701.	3.3	11
39	New Aspects of Vascular Calcification: Histone Deacetylases and Beyond. Journal of Korean Medical Science, 2017, 32, 1738.	2.5	21
40	Identification of the Role of miR-142-5p in Alzheimer's Disease by Comparative Bioinformatics and Cellular Analysis. Frontiers in Molecular Neuroscience, 2017, 10, 227.	2.9	47
41	Gastric Carcinogenesis in the miR-222/221 Transgenic Mouse Model. Cancer Research and Treatment, 2017, 49, 150-160.	3.0	5
42	Precise mapping of the transcription start sites of human microRNAs using DROSHA knockout cells. BMC Genomics, 2016, 17, 908.	2.8	14
43	MicroRNA-139-5p regulates proliferation of hematopoietic progenitors and is repressed during BCR-ABL–mediated leukemogenesis. Blood, 2016, 128, 2117-2129.	1.4	27
44	Re-evaluation of the roles of <i>DROSHA</i> , <i>Exportin 5</i> , and <i>DICER</i> in microRNA biogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E1881-9.	7.1	367
45	Extracellular microRNAs as Biomarkers in Human Disease. Chonnam Medical Journal, 2015, 51, 51.	0.9	69
46	TALEN-based knockout library for human microRNAs. Nature Structural and Molecular Biology, 2013, 20, 1458-1464.	8.2	74
47	Short Structured RNAs with Low GC Content Are Selectively Lost during Extraction from a Small Number of Cells. Molecular Cell, 2012, 46, 893-895.	9.7	196
48	Human cytomegalovirus microRNA miR-US4-1 inhibits CD8+ T cell responses by targeting the aminopeptidase ERAP1. Nature Immunology, 2011, 12, 984-991.	14.5	162
49	MicroRNA-494 Downregulates KIT and Inhibits Gastrointestinal Stromal Tumor Cell Proliferation. Clinical Cancer Research, 2011, 17, 7584-7594.	7.0	99
50	Modifications of Small RNAs and Their Associated Proteins. Cell, 2010, 143, 703-709.	28.9	151
51	Functional links between clustered microRNAs: suppression of cell-cycle inhibitors by microRNA clusters in gastric cancer. Nucleic Acids Research, 2009, 37, 1672-1681.	14.5	429
52	Posttranscriptional Crossregulation between Drosha and DGCR8. Cell, 2009, 136, 75-84.	28.9	380
53	TUT4 in Concert with Lin28 Suppresses MicroRNA Biogenesis through Pre-MicroRNA Uridylation. Cell, 2009, 138, 696-708.	28.9	730
54	Processing of intronic microRNAs. EMBO Journal, 2007, 26, 775-783.	7.8	714

#	Article	IF	CITATIONS
55	Identification and characterization of small RNAs from vernalizedArabidopsis thaliana. Journal of Plant Biology, 2007, 50, 562-572.	2.1	4
56	The role of PACT in the RNA silencing pathway. EMBO Journal, 2006, 25, 522-532.	7.8	594
57	The Drosha-DGCR8 complex in primary microRNA processing. Genes and Development, 2004, 18, 3016-3027.	5.9	1,774