
Guillaume Lamour

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6860534/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Self-assembly of aramid amphiphiles into ultra-stable nanoribbons and aligned nanoribbon threads. Nature Nanotechnology, 2021, 16, 447-454.	31.5	49
2	Morphological Transitions of a Photoswitchable Aramid Amphiphile Nanostructure. Nano Letters, 2021, 21, 2912-2918.	9.1	13
3	Domain-selective thermal decomposition within supramolecular nanoribbons. Nature Communications, 2021, 12, 7340.	12.8	6
4	Mapping and Modeling the Nanomechanics of Bare and Protein-Coated Lipid Nanotubes. Physical Review X, 2020, 10, .	8.9	7
5	Inverse Correlation between Amyloid Stiffness and Size. Journal of the American Chemical Society, 2019, 141, 58-61.	13.7	7
6	A Rational Structured Epitope Defines a Distinct Subclass of Toxic Amyloid-beta Oligomers. ACS Chemical Neuroscience, 2018, 9, 1591-1606.	3.5	21
7	Mechanical Anisotropy in GNNQQNY Amyloid Crystals. Journal of Physical Chemistry Letters, 2018, 9, 4901-4909.	4.6	7
8	Mapping the Broad Structural and Mechanical Properties of Amyloid Fibrils. Biophysical Journal, 2017, 112, 584-594.	0.5	40
9	Chemical, physical and morphological properties of bacterial biofilms affect survival of encased Campylobacter jejuni F38011 under aerobic stress. International Journal of Food Microbiology, 2016, 238, 172-182.	4.7	17
10	Substrateâ€induced PC12 Cell Differentiation Without Filopodial, Lamellipodial Activity or NGF Stimulationa. Macromolecular Bioscience, 2015, 15, 364-371.	4.1	5
11	Changes in Structural-Mechanical Properties and Degradability of Collagen during Aging-associated Modifications. Journal of Biological Chemistry, 2015, 290, 23291-23306.	3.4	81
12	Construction and Characterization of Kilobasepair Densely Labeled Peptide-DNA. Biomacromolecules, 2014, 15, 4065-4072.	5.4	16
13	Mechanically Tightening a Protein Slipknot into a Trefoil Knot. Journal of the American Chemical Society, 2014, 136, 11946-11955.	13.7	48
14	Easyworm: an open-source software tool to determine the mechanical properties of worm-like chains. Source Code for Biology and Medicine, 2014, 9, 16.	1.7	73
15	High Intrinsic Mechanical Flexibility of Mouse Prion Nanofibrils Revealed by Measurements of Axial and Radial Young's Moduli. ACS Nano, 2014, 8, 3851-3861.	14.6	51
16	Promiscuity as a functional trait: intrinsically disordered regions as central players of interactomes. Biochemical Journal, 2013, 454, 361-369.	3.7	156
17	The Prion Protein Ligand, Stress-Inducible Phosphoprotein 1, Regulates Amyloid-β Oligomer Toxicity. Journal of Neuroscience, 2013, 33, 16552-16564.	3.6	70
18	Effects of Cysteine Proteases on the Structural and Mechanical Properties of Collagen Fibers. Journal of Biological Chemistry, 2013, 288, 5940-5950.	3.4	80

#	Article	IF	CITATIONS
19	The Molecular Mechanism Underlying Mechanical Anisotropy of the Protein GB1. Biophysical Journal, 2012, 103, 2361-2368.	0.5	32
20	Long-Time Scale Fluctuations of Human Prion Protein Determined by Restrained MD Simulations. Biochemistry, 2011, 50, 10192-10194.	2.5	5
21	Interplay between long―and shortâ€ŧange interactions drives neuritogenesis on stiff surfaces. Journal of Biomedical Materials Research - Part A, 2011, 99A, 598-606.	4.0	6
22	Neuronal adhesion and differentiation driven by nanoscale surface free-energy gradients. Biomaterials, 2010, 31, 3762-3771.	11.4	42
23	Contact Angle Measurements Using a Simplified Experimental Setup. Journal of Chemical Education, 2010, 87, 1403-1407.	2.3	202
24	Influence of surface energy distribution on neuritogenesis. Colloids and Surfaces B: Biointerfaces, 2009, 72, 208-218.	5.0	27