
Katharine E Magor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6860344/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Association of RIG-I with innate immunity of ducks to influenza. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 5913-5918.	7.1	422
2	lgY: clues to the origins of modern antibodies. Trends in Immunology, 1995, 16, 392-398.	7.5	405
3	The duck genome and transcriptome provide insight into an avian influenza virus reservoir species. Nature Genetics, 2013, 45, 776-783.	21.4	327
4	Molecular Imprinting as a Signal-Activation Mechanism of the Viral RNA Sensor RIC-I. Molecular Cell, 2014, 55, 511-523.	9.7	214
5	Evolution of effectors and receptors of innate immunity. Developmental and Comparative Immunology, 2001, 25, 651-682.	2.3	149
6	Defense genes missing from the flight division. Developmental and Comparative Immunology, 2013, 41, 377-388.	2.3	139
7	CK-1, a putative chemokine of rainbow trout (Oncorhynchus mykiss). Immunological Reviews, 1998, 166, 341-348.	6.0	113
8	A toll-like receptor (TLR) gene that is up-regulated in activated goldfish macrophages. Developmental and Comparative Immunology, 2003, 27, 685-698.	2.3	109
9	Immunoglobulins of the non-galliform birds: Antibody expression and repertoire in the duck. Developmental and Comparative Immunology, 2006, 30, 93-100.	2.3	102
10	The MHC of the Duck (<i>Anas platyrhynchos</i>) Contains Five Differentially Expressed Class I Genes. Journal of Immunology, 2005, 175, 6702-6712.	0.8	81
11	Avian influenza rapidly induces antiviral genes in duck lung and intestine. Molecular Immunology, 2012, 51, 316-324.	2.2	77
12	The duck toll like receptor 7: Genomic organization, expression and function. Molecular Immunology, 2008, 45, 2055-2061.	2.2	67
13	A divergent non-classical class I gene conserved in salmonids. Immunogenetics, 1999, 49, 479-490.	2.4	66
14	Identification of avian RIG-I responsive genes during influenza infection. Molecular Immunology, 2013, 54, 89-97.	2.2	62
15	Immunoglobulin genetics and antibody responses to influenza in ducks. Developmental and Comparative Immunology, 2011, 35, 1008-1017.	2.3	61
16	Innate Immune Responses to Avian Influenza Viruses in Ducks and Chickens. Veterinary Sciences, 2019, 6, 5.	1.7	53
17	Secretory immune system of the duck (Anas platyrhynchos ). Identification and expression of the genes encoding IgA and IgM heavy chains. European Journal of Immunology, 1998, 28, 1063-1068.	2.9	51
18	The dominant MHC class I gene is adjacent to the polymorphic TAP2 gene in the duck, Anas platyrhynchos. Immunogenetics, 2004, 56, 192-203.	2.4	51

KATHARINE E MAGOR

#	Article	lF	CITATIONS
19	Duck Interferon-Inducible Transmembrane Protein 3 Mediates Restriction of Influenza Viruses. Journal of Virology, 2016, 90, 103-116.	3.4	41
20	cDNA sequence and organization of the immunoglobulin light chain gene of the duck, Anas platyrhynchos. Developmental and Comparative Immunology, 1994, 18, 523-531.	2.3	40
21	IFN and cytokine responses in ducks to genetically similar H5N1 influenza A viruses of varying pathogenicity. Journal of General Virology, 2018, 99, 464-474.	2.9	37
22	Structure and Evolution of Avian Immunoglobulins. , 2014, , 103-120.		32
23	The β2-Microglobulin Locus of Rainbow Trout (Oncorhynchus mykiss) Contains Three Polymorphic Genes. Journal of Immunology, 2004, 172, 3635-3643.	0.8	31
24	Activation of Duck RIG-I by TRIM25 Is Independent of Anchored Ubiquitin. PLoS ONE, 2014, 9, e86968.	2.5	31
25	Pattern Recognition Receptor Signaling and Innate Responses to Influenza A Viruses in the Mallard Duck, Compared to Humans and Chickens. Frontiers in Cellular and Infection Microbiology, 2020, 10, 209.	3.9	30
26	Duck innate immune responses to high and low pathogenicity H5 avian influenza viruses. Veterinary Microbiology, 2019, 228, 101-111.	1.9	29
27	Opposite orientation of the α- and Ïchain constant region genes in the immunoglobulin heavy chain locus of the duck. Immunogenetics, 1999, 49, 692-695.	2.4	27
28	Immune gene discovery by expressed sequence tag analysis of spleen in the duck (Anas platyrhynchos). Developmental and Comparative Immunology, 2007, 31, 272-285.	2.3	23
29	Expression of duck CCL19 and CCL21 and CCR7 receptor in lymphoid and influenza-infected tissues. Molecular Immunology, 2011, 48, 1950-1957.	2.2	23
30	Structures of two major histocompatibility complex class I genes of the rainbow trout () Tj ETQq0 0 0 rgBT /Over	lock 10 Tf 2.4	50,302 Td (C
31	STRUCTURE AND EVOLUTION OF AVIAN IMMUNOGLOBULINS. , 2008, , 107-127.		19
32	Purification of duck immunoglobulins: an evaluation of protein A and protein G affinity chromatography. Veterinary Immunology and Immunopathology, 1995, 44, 169-180.	1.2	18
33	Extensive Allelic Diversity of MHC Class I in Wild Mallard Ducks. Journal of Immunology, 2016, 197, 783-794.	0.8	14
34	Molecular Evolution of the Influenza A Virus Non-structural Protein 1 in Interspecies Transmission and Adaptation. Frontiers in Microbiology, 2021, 12, 693204.	3.5	14
35	Influenza PB1-F2 Inhibits Avian MAVS Signaling. Viruses, 2020, 12, 409.	3.3	13

³⁶Duck TRIM27-L enhances MAVS signaling and is absent in chickens and turkeys. Molecular Immunology,
2015, 67, 607-615.2.212

KATHARINE E MAGOR

#	Article	IF	CITATIONS
37	Microbiome Composition and Borrelia Detection in Ixodes scapularis Ticks at the Northwestern Edge of Their Range. Tropical Medicine and Infectious Disease, 2020, 5, 173.	2.3	12
38	Evolution of RNA sensing receptors in birds. Immunogenetics, 2022, 74, 149-165.	2.4	11
39	Exon 5 Encoding the Transmembrane Region of HLA-A Contains a Transitional Region for the Induction of Nonsense-Mediated mRNA Decay. Journal of Immunology, 2001, 167, 6901-6911.	0.8	10
40	Health monitoring in birds using bio-loggers and whole blood transcriptomics. Scientific Reports, 2021, 11, 10815.	3.3	9
41	Dendritic cell inhibitory and activating immunoreceptors (DCIR and DCAR) in duck: Genomic organization and expression. Molecular Immunology, 2008, 45, 3942-3946.	2.2	8
42	The Minor MHC Class I Gene <i>UDA</i> of Ducks Is Regulated by Let-7 MicroRNA. Journal of Immunology, 2016, 197, 1212-1220.	0.8	8
43	The core promoter controls basal and inducible expression of duck retinoic acid inducible gene-I (RIG-I). Molecular Immunology, 2018, 103, 156-165.	2.2	7
44	Tissue Specific Transcriptome Changes Upon Influenza A Virus Replication in the Duck. Frontiers in Immunology, 2021, 12, 786205.	4.8	6
45	Structure and evolution of avian immunoglobulins. , 2022, , 101-119.		6
46	Flavivirus Capsid Proteins Inhibit the Interferon Response. Viruses, 2022, 14, 968.	3.3	6
47	Comparative Immunology of Agricultural Birds. , 2014, , 363-389.		5
48	COMPARATIVE IMMUNOLOGY OF AGRICULTURAL BIRDS. , 2008, , 395-420.		3
49	Comparative immunology of agricultural birds. , 2022, , 489-518.		1