
Hilary K Mcmillan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6860252/publications.pdf Version: 2024-02-01

HILARY K MCMILLAN

#	Article	IF	CITATIONS
1	Impacts of observational uncertainty on analysis and modelling of hydrological processes: Preface. Hydrological Processes, 2022, 36, .	2.6	5
2	A taxonomy of hydrological processes and watershed function. Hydrological Processes, 2022, 36, .	2.6	5
3	A signatureâ€based approach to quantify soil moisture dynamics under contrasting landâ€uses. Hydrological Processes, 2022, 36, .	2.6	4
4	Large Scale Evaluation of Relationships Between Hydrologic Signatures and Processes. Water Resources Research, 2022, 58, .	4.2	8
5	A review of hydrologic signatures and their applications. Wiley Interdisciplinary Reviews: Water, 2021, 8, .	6.5	55
6	A soil moisture monitoring network to assess controls on runoff generation during atmospheric river events. Hydrological Processes, 2021, 35, .	2.6	7
7	Including Regional Knowledge Improves Baseflow Signature Predictions in Large Sample Hydrology. Water Resources Research, 2021, 57, e2020WR028354.	4.2	30
8	TOSSH: A Toolbox for Streamflow Signatures in Hydrology. Environmental Modelling and Software, 2021, 138, 104983.	4.5	26
9	Tracing sources of stormflow and groundwater recharge in an urban, semi-arid watershed using stable isotopes. Journal of Hydrology: Regional Studies, 2021, 34, 100806.	2.4	9
10	Preface: Linking landscape organisation and hydrological functioning: from hypotheses and observations to concepts, models and understanding. Hydrology and Earth System Sciences, 2021, 25, 5277-5285.	4.9	3
11	Linking hydrologic signatures to hydrologic processes: A review. Hydrological Processes, 2020, 34, 1393-1409.	2.6	82
12	Deriving hydrological signatures from soil moisture data. Hydrological Processes, 2020, 34, 1410-1427.	2.6	18
13	Information content of snow hydrological signatures based on streamflow, precipitation and air temperature. Hydrological Processes, 2020, 34, 2763-2779.	2.6	8
14	A Decade of Water Storage Changes Across the Contiguous United States From GPS and Satellite Gravity. Geophysical Research Letters, 2019, 46, 13006-13015.	4.0	41
15	Impact of Stage Measurement Errors on Streamflow Uncertainty. Water Resources Research, 2018, 54, 1952-1976.	4.2	50
16	Hydrological data uncertainty and its implications. Wiley Interdisciplinary Reviews: Water, 2018, 5, e1319.	6.5	89
17	A Comparison of Methods for Streamflow Uncertainty Estimation. Water Resources Research, 2018, 54, 7149-7176.	4.2	108
18	How uncertainty analysis of streamflow data can reduce costs and promote robust decisions in water management applications. Water Resources Research, 2017, 53, 5220-5228.	4.2	60

HILARY K MCMILLAN

#	Article	IF	CITATIONS
19	Five guidelines for selecting hydrological signatures. Hydrological Processes, 2017, 31, 4757-4761.	2.6	68
20	Modeling surface water-groundwater interaction in New Zealand: Model development and application. Hydrological Processes, 2017, 31, 925-934.	2.6	17
21	mizuRoute version 1: a river network routing tool for a continental domain water resources applications. Geoscientific Model Development, 2016, 9, 2223-2238.	3.6	42
22	Nonparametric catchment clustering using the data depth function. Hydrological Sciences Journal, 2016, 61, 2649-2667.	2.6	21
23	Validation of a national hydrological model. Journal of Hydrology, 2016, 541, 800-815.	5.4	49
24	Influence of soil and climate on root zone storage capacity. Water Resources Research, 2016, 52, 2009-2024.	4.2	62
25	Uncertainty in hydrological signatures for gauged and ungauged catchments. Water Resources Research, 2016, 52, 1847-1865.	4.2	104
26	Robust informational entropy-based descriptors of flow in catchment hydrology. Hydrological Sciences Journal, 2016, 61, 1-18.	2.6	38
27	Field measurement of groundwater recharge under irrigation in Canterbury, New Zealand, using drainage lysimeters. Agricultural Water Management, 2016, 166, 17-32.	5.6	29
28	Accelerating advances in continental domain hydrologic modeling. Water Resources Research, 2015, 51, 10078-10091.	4.2	102
29	Rating curve estimation under epistemic uncertainty. Hydrological Processes, 2015, 29, 1873-1882.	2.6	69
30	Uncertainty in hydrological signatures. Hydrology and Earth System Sciences, 2015, 19, 3951-3968.	4.9	127
31	Characteristics and controls of variability in soil moisture and groundwater in a headwater catchment. Hydrology and Earth System Sciences, 2015, 19, 1767-1786.	4.9	36
32	Spatial variability of hydrological processes and model structure diagnostics in a 50 km ² catchment. Hydrological Processes, 2014, 28, 4896-4913.	2.6	64
33	Use of an entropyâ€based metric in multiobjective calibration to improve model performance. Water Resources Research, 2014, 50, 8066-8083.	4.2	37
34	"Panta Rhei—Everything Flows― Change in hydrology and society—The IAHS Scientific Decade 2013–2022. Hydrological Sciences Journal, 2013, 58, 1256-1275.	2.6	569
35	Use of the data depth function to differentiate between case of interpolation and extrapolation in hydrological model prediction. Journal of Hydrology, 2013, 477, 213-228.	5.4	16
36	Operational hydrological data assimilation with the recursive ensemble Kalman filter. Hydrology and Earth System Sciences, 2013, 17, 21-38.	4.9	92

HILARY K MCMILLAN

#	Article	IF	CITATIONS
37	Do timeâ€variable tracers aid the evaluation of hydrological model structure? A multimodel approach. Water Resources Research, 2012, 48, .	4.2	86
38	Benchmarking observational uncertainties for hydrology: rainfall, river discharge and water quality. Hydrological Processes, 2012, 26, 4078-4111.	2.6	345
39	Effect of spatial variability and seasonality in soil moisture on drainage thresholds and fluxes in a conceptual hydrological model. Hydrological Processes, 2012, 26, 2838-2844.	2.6	14
40	Rainfall uncertainty in hydrological modelling: An evaluation of multiplicative error models. Journal of Hydrology, 2011, 400, 83-94.	5.4	195
41	Hydrological field data from a modeller's perspective: Part 1. Diagnostic tests for model structure. Hydrological Processes, 2011, 25, 511-522.	2.6	121
42	Hydrological field data from a modeller's perspective: Part 2: processâ€based evaluation of model hypotheses. Hydrological Processes, 2011, 25, 523-543.	2.6	103
43	Impacts of uncertain river flow data on rainfallâ€runoff model calibration and discharge predictions. Hydrological Processes, 2010, 24, 1270-1284.	2.6	136
44	Rainfallâ€runoff model calibration using informal likelihood measures within a Markov chain Monte Carlo sampling scheme. Water Resources Research, 2009, 45, .	4.2	60
45	Endâ€ŧoâ€end flood risk assessment: A coupled model cascade with uncertainty estimation. Water Resources Research, 2008, 44, .	4.2	51
46	Reduced complexity strategies for modelling urban floodplain inundation. Geomorphology, 2007, 90, 226-243.	2.6	111
47	Constraining dynamic TOPMODEL responses for imprecise water table information using fuzzy rule based performance measures. Journal of Hydrology, 2004, 291, 254-277.	5.4	158
48	Scientific debate of Panta Rhei research – how to advance our knowledge of changes in hydrology and society?. Hydrological Sciences Journal, 0, , 1-3.	2.6	7
49	Panta Rhei 2013–2015: global perspectives on hydrology, society and change. Hydrological Sciences Journal, 0, , 1-18.	2.6	53
50	Experimental Coupling of TOPMODEL with the National Water Model: Effects of Coupling Interface Complexity on Model Performance. Journal of the American Water Resources Association, 0, , .	2.4	1