Prakash Parthiban Selvakumar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/685975/publications.pdf

Version: 2024-02-01

21 papers

748 citations

687363 13 h-index 752698 20 g-index

22 all docs 22 docs citations

times ranked

22

1441 citing authors

#	Article	IF	CITATIONS
1	Materials roles for promoting angiogenesis in tissue regeneration. Progress in Materials Science, 2021, 117, 100732.	32.8	81
2	Prevascularized hydrogels with mature vascular networks promote the regeneration of criticalâ€size calvarial bone defects in vivo. Journal of Tissue Engineering and Regenerative Medicine, 2021, 15, 219-231.	2.7	18
3	BoneMAâ€"synthesis and characterization of a methacrylated bone-derived hydrogel for bioprinting of in-vitro vascularized tissue constructs. Biofabrication, 2021, 13, 035031.	7.1	21
4	Effects of recipient age, heparin release and allogeneic bone marrow-derived stromal cells on vascular graft remodeling. Acta Biomaterialia, 2021, 125, 172-182.	8.3	8
5	Nile Tilapia Fish Skin, Scales, and Spine as Naturally Derived Biomaterials for Tissue Regeneration. Current Oral Health Reports, 2020, 7, 335-343.	1.6	2
6	Engineering pericyte-supported microvascular capillaries in cell-laden hydrogels using stem cells from the bone marrow, dental pulp and dental apical papilla. Scientific Reports, 2020, 10, 21579.	3.3	24
7	Combined Effects of Nanoroughness and Ions Produced by Electrodeposition of Mesoporous Bioglass Nanoparticle for Bone Regeneration. ACS Applied Bio Materials, 2019, 2, 5190-5203.	4.6	29
8	Combinatory Cancer Therapeutics with Nanoceria-Capped Mesoporous Silica Nanocarriers through pH-triggered Drug Release and Redox Activity. ACS Applied Materials & Samp; Interfaces, 2019, 11, 288-299.	8.0	52
9	Three-dimensional co-culture of C2C12/PC12 cells improves skeletal muscle tissue formation and function. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 582-595.	2.7	70
10	Covalently immobilized VEGF-mimicking peptide with gelatin methacrylate enhances microvascularization of endothelial cells. Acta Biomaterialia, 2017, 51, 330-340.	8.3	49
11	Skeletal Muscle Tissue Engineering: Methods to Form Skeletal Myotubes and Their Applications. Tissue Engineering - Part B: Reviews, 2014, 20, 403-436.	4.8	218
12	Formation of serrated nanorods of hydroxyapatite through organic modification under hydrothermal processing. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	3
13	Strategy to reduce carbonate incorporation in the fabrication of hydroxyapatite nanopowders. Journal of the Ceramic Society of Japan, 2011, 119, 947-953.	1.1	2
14	In vitrostudy of carbonated hydroxyapatite compacts prepared by double-step hydrothermal method. IOP Conference Series: Materials Science and Engineering, 2011, 18, 192008.	0.6	0
15	Effect of urea on formation of hydroxyapatite through double-step hydrothermal processing. Materials Science and Engineering C, 2011, 31, 1383-1388.	7. 3	18
16	Effect of ammonium carbonate on formation of calcium-deficient hydroxyapatite through double-step hydrothermal processing. Journal of Materials Science: Materials in Medicine, 2011, 22, 209-216.	3.6	9
17	Hydrothermal synthesis of porous triphasic hydroxyapatite/ $(\hat{l}\pm$ and $\hat{l}^2)$ tricalcium phosphate. Journal of Materials Science: Materials in Medicine, 2009, 20, 43-48.	3.6	58
18	Preparation of thermally stable nanocrystalline hydroxyapatite by hydrothermal method. Journal of Materials Science: Materials in Medicine, 2009, 20, 77-83.	3.6	19

PRAKASH PARTHIBAN

#	Article	IF	CITATIONS
19	Investigations on the inÂvitro bioactivity of swift heavy oxygen ion irradiated hydroxyapatite. Journal of Materials Science: Materials in Medicine, 2009, 20, 271-275.	3.6	35
20	Effect of swift heavy ion irradiation on hydrothermally synthesized hydroxyapatite ceramics. Nuclear Instruments & Methods in Physics Research B, 2008, 266, 911-917.	1.4	24
21	Tetraaquadiglycinemagnesium(II) hexaaquamagnesium(II) bis(sulfate). Acta Crystallographica Section E: Structure Reports Online, 2007, 63, m2901-m2902.	0.2	8