Maria Vincenza Catania

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6859709/publications.pdf

Version: 2024-02-01

77 papers

4,083 citations

76326 40 h-index 63 g-index

78 all docs 78 docs citations

78 times ranked 4564 citing authors

#	Article	IF	Citations
1	Fragile X mental retardation protein (FMRP) and metabotropic glutamate receptor subtype 5 (mGlu5) control stress granule formation in astrocytes. Neurobiology of Disease, 2021, 154, 105338.	4.4	8
2	Aberrant mitochondrial bioenergetics in the cerebral cortex of the <i>Fmr1</i> knockout mouse model of fragile X syndrome. Biological Chemistry, 2020, 401, 497-503.	2.5	30
3	EEG Abnormalities as a Neurophysiological Biomarker of Severity in Autism Spectrum Disorder: A Pilot Cohort Study. Journal of Autism and Developmental Disorders, 2019, 49, 2337-2347.	2.7	27
4	Activation of Serotonin 5-HT7 Receptors Modulates Hippocampal Synaptic Plasticity by Stimulation of Adenylate Cyclases and Rescues Learning and Behavior in a Mouse Model of Fragile X Syndrome. Frontiers in Molecular Neuroscience, 2018, 11, 353.	2.9	32
5	Endothelin-1 Induces Degeneration of Cultured Motor Neurons Through a Mechanism Mediated by Nitric Oxide and PI3K/Akt Pathway. Neurotoxicity Research, 2017, 32, 58-70.	2.7	21
6	Altered surface mGluR5 dynamics provoke synaptic NMDAR dysfunction and cognitive defects in Fmr1 knockout mice. Nature Communications, 2017, 8, 1103.	12.8	71
7	The antineoplastic drug flavopiridol reverses memory impairment induced by Amyloid-ß 1-42 oligomers in mice. Pharmacological Research, 2016, 106, 10-20.	7.1	32
8	Neuro-Inflammatory Mechanisms in Developmental Disorders Associated with Intellectual Disability and Autism Spectrum Disorder: A Neuro- Immune Perspective. CNS and Neurological Disorders - Drug Targets, 2016, 15, 448-463.	1.4	39
9	The FMRP/ <i>GRK4</i> mRNA interaction uncovers a new mode of binding of the Fragile X mental retardation protein in cerebellum. Nucleic Acids Research, 2015, 43, 8540-8550.	14.5	24
10	Fragile X mental retardation protein (FMRP) interacting proteins exhibit different expression patterns during development. International Journal of Developmental Neuroscience, 2015, 42, 15-23.	1.6	51
11	Synapses as Therapeutic Targets for Autism Spectrum Disorders: An International Symposium Held in Pavia on July 4th, 2014. Frontiers in Cellular Neuroscience, 2014, 8, 309.	3.7	9
12	Viability of olfactory ensheathing cells after hypoxia and serum deprivation: Implication for therapeutic transplantation. Journal of Neuroscience Research, 2014, 92, 1757-1766.	2.9	16
13	Editorial. Neuroscience and Biobehavioral Reviews, 2014, 46, 159-160.	6.1	O
14	Dysregulation of group-I metabotropic glutamate (mGlu) receptor mediated signalling in disorders associated with Intellectual Disability and Autism. Neuroscience and Biobehavioral Reviews, 2014, 46, 228-241.	6.1	87
15	Changes in mGlu5 Receptor-Dependent Synaptic Plasticity and Coupling to Homer Proteins in the Hippocampus of Ube3A Hemizygous Mice Modeling Angelman Syndrome. Journal of Neuroscience, 2014, 34, 4558-4566.	3.6	73
16	Differential patterns of NOTCH1-4 receptor expression are markers of glioma cell differentiation. Neuro-Oncology, 2014, 16, 204-216.	1.2	35
17	Endothelin-1 is over-expressed in amyotrophic lateral sclerosis and induces motor neuron cell death. Neurobiology of Disease, 2014, 65, 160-171.	4.4	25
18	5-HT7 receptors as modulators of neuronal excitability, synaptic transmission and plasticity: physiological role and possible implications in autism spectrum disorders. Frontiers in Cellular Neuroscience, 2014, 8, 250.	3.7	81

#	Article	IF	CITATIONS
19	The 3' UTR of FMR1 mRNA is a target of miR-101, miR-129-5p and miR-221: implications for the molecular pathology of FXTAS at the synapse. Human Molecular Genetics, 2013, 22, 1971-1982.	2.9	65
20	Activation of 5-HT7 Serotonin Receptors Reverses Metabotropic Glutamate Receptor-Mediated Synaptic Plasticity in Wild-Type and Fmr1 Knockout Mice, a Model of Fragile X Syndrome. Biological Psychiatry, 2012, 72, 924-933.	1.3	109
21	5â€HT _{1A} and 5â€HT ₇ receptors differently modulate AMPA receptorâ€mediated hippocampal synaptic transmission. Hippocampus, 2012, 22, 790-801.	1.9	55
22	A prolonged pharmacological blockade of type-5 metabotropic glutamate receptors protects cultured spinal cord motor neurons against excitotoxic death. Neurobiology of Disease, 2011, 42, 252-264.	4.4	31
23	A metabolomic and systems biology perspective on the brain of the Fragile X syndrome mouse model. Genome Research, 2011, 21, 2190-2202.	5.5	110
24	Calcitonin Gene-Related Peptide (CGRP) Stimulates Purkinje Cell Dendrite Growth in Culture. Neurochemical Research, 2010, 35, 2135-2143.	3.3	9
25	FRAXE-associated mental retardation protein (FMR2) is an RNA-binding protein with high affinity for G-quartet RNA forming structure. Nucleic Acids Research, 2009, 37, 1269-1279.	14.5	67
26	Metabotropic Glutamate Receptors in Glial Cells. Neurochemical Research, 2008, 33, 2436-2443.	3.3	110
27	Audiogenic seizure susceptibility is reduced in fragile X knockout mice after introduction of FMR1 transgenes. Experimental Neurology, 2007, 203, 233-240.	4.1	54
28	Group I Metabotropic Glutamate Receptors: A Role in Neurodevelopmental Disorders?. Molecular Neurobiology, 2007, 35, 298-307.	4.0	53
29	Expression of pannexin1 in the CNS of adult mouse: Cellular localization and effect of 4-aminopyridine-induced seizures. Neuroscience, 2006, 141, 167-178.	2.3	66
30	Expression of multidrug resistance type 1 gene (MDR1) P-glycoprotein in intractable epilepsy with different aetiologies: a double-labelling and electron microscopy study. Neurological Sciences, 2006, 27, 245-251.	1.9	27
31	Expression of groups I and II metabotropic glutamate receptors in the rat brain during aging. Brain Research, 2005, 1043, 95-106.	2.2	49
32	A major role for astrocytes in the neuroprotective effect of estrogen. Drug Development Research, 2005, 66, 126-135.	2.9	6
33	A Reduced Number of Metabotropic Glutamate Subtype 5 Receptors Are Associated with Constitutive Homer Proteins in a Mouse Model of Fragile X Syndrome. Journal of Neuroscience, 2005, 25, 8908-8916.	3.6	123
34	$17\hat{l}^2$ -estradiol rescues spinal motoneurons from AMPA-induced toxicity: A role for glial cells. Neurobiology of Disease, 2005, 20, 461-470.	4.4	47
35	Differential expression of cyclooxygenase-1 and cyclooxygenase-2 in the cornea during wound healing. Tissue and Cell, 2004, 36, 1-12.	2.2	21
36	Object recognition impairment in Fmr1 knockout mice is reversed by amphetamine: involvement of dopamine in the medial prefrontal cortex. Behavioural Pharmacology, 2004, 15, 433-442.	1.7	113

#	Article	IF	Citations
37	Upregulation of neuronal nitric oxide synthase in in vitro stellate astrocytes and in vivo reactive astrocytes after electrically induced status epilepticus. Neurochemical Research, 2003, 28, 607-615.	3.3	26
38	An increased expression of the mGlu5 receptor protein following LTP induction at the perforant path–dentate gyrus synapse in freely moving rats. Neuropharmacology, 2003, 44, 17-25.	4.1	45
39	Differential Expression of Estrogen Receptors Alpha and Beta in the Spinal Cord during Postnatal Development: Localization in Glial Cells. Neuroendocrinology, 2003, 77, 334-340.	2.5	59
40	l-Acetylcarnitine Induces Analgesia by Selectively Up-Regulating mGlu2 Metabotropic Glutamate Receptors. Molecular Pharmacology, 2002, 61, 989-996.	2.3	110
41	Metabotropic Glutamate 2 Receptors Modulate Synaptic Inputs and Calcium Signals in Striatal Cholinergic Interneurons. Journal of Neuroscience, 2002, 22, 6176-6185.	3. 6	67
42	Selective Blockade of Type-1 Metabotropic Glutamate Receptors Induces Neuroprotection by Enhancing Gabaergic Transmission. Molecular and Cellular Neurosciences, 2001, 17, 1071-1083.	2.2	92
43	Immunohistochemical localization of group I and II metabotropic glutamate receptors in control and amyotrophic lateral sclerosis human spinal cord: upregulation in reactive astrocytes. Neuroscience, 2001, 105, 509-520.	2.3	149
44	Increased Expression of Neuronal Nitric Oxide Synthase Spliced Variants in Reactive Astrocytes of Amyotrophic Lateral Sclerosis Human Spinal Cord. Journal of Neuroscience, 2001, 21, RC148-RC148.	3.6	80
45	Endogenous Activation of Group-I Metabotropic Glutamate Receptors Is Required for Differentiation and Survival of Cerebellar Purkinje Cells. Journal of Neuroscience, 2001, 21, 7664-7673.	3.6	73
46	Selective Activation of mGlu4 Metabotropic Glutamate Receptors Is Protective against Excitotoxic Neuronal Death. Journal of Neuroscience, 2000, 20, 6413-6420.	3.6	113
47	An enhanced expression of the immediate early gene, Egr-1, is associated with neuronal apoptosis in culture. Neuroscience, 1999, 91, 1529-1538.	2.3	35
48	Neuroprotective activity of the potent and selective mGlu1a metabotropic glutamate receptor antagonist, (+)-2-methyl-4 carboxyphenylglycine (LY367385): comparison with LY357366, a broader spectrum antagonist with equal affinity for mGlu1a and mGlu5 receptors. Neuropharmacology, 1999, 38, 199-207.	4.1	120
49	Group-I metabotropic glutamate receptors: hypotheses to explain their dual role in neurotoxicity and neuroprotection. Neuropharmacology, 1999, 38, 1477-1484.	4.1	153
50	Deafferentation upâ€regulates the expression of the mGlu1a metabotropic glutamate receptor protein in the olfactory bulb. European Journal of Neuroscience, 1998, 10, 771-776.	2.6	14
51	AMPA receptor subunits are differentially expressed in parvalbumin- and calretinin-positive neurons of the rat hippocampus. European Journal of Neuroscience, 1998, 10, 3479-3490.	2.6	40
52	Prominent Dendritic Localization in Forebrain Neurons of a Novel mRNA and Its Product, Dendrin. Molecular and Cellular Neurosciences, 1997, 8, 367-374.	2.2	65
53	Expression of AMPA-glutamate Receptor B Subunit in Rat Hippocampal GABAergic Neurons. European Journal of Neuroscience, 1996, 8, 1580-1590.	2.6	54
54	Differential expression of AMPA receptor subunits in NOS-positive neurons of cortex, striatum, and hippocampus. Journal of Neuroscience, 1995, 15, 7046-7061.	3.6	97

#	Article	IF	CITATIONS
55	Anatomical Distribution of Metabotropic Glutamate Receptors in Mammalian Brain., 1994,, 99-123.		19
56	Glutamate receptor expression in rat striatum: Effect of deafferentation. Brain Research, 1994, 647, 209-219.	2.2	69
57	Glutamate receptors in striatum and substantia nigra: Effects of medial forebrain bundle lesions. Brain Research, 1994, 645, 98-102.	2.2	96
58	Metabotropic glutamate receptors are differentially regulated during development. Neuroscience, 1994, 61, 481-495.	2.3	224
59	Plasticity of Metabotropic Glutamate Receptors in Physiological and Pathological Conditions. , 1994, , 243-269.		4
60	Metabotropic glutamate receptor heterogeneity in rat brain. Molecular Pharmacology, 1994, 45, 626-36.	2.3	33
61	Phospholipase A2Modulates Different Subtypes of Excitatory Amino Acid Receptors: Autoradiographic Evidence. Journal of Neurochemistry, 1993, 60, 236-245.	3.9	39
62	Quisqualate resolves two distinct metabotropic [3H]glutamate binding sites. NeuroReport, 1993, 4, 311-313.	1.2	25
63	Thyrotropin releasing hormone (TRH) and its analog, RGH-2202, accelerate maturation of cerebellar neurons in vitro. Developmental Brain Research, 1992, 69, 179-183.	1.7	12
64	Melittin enhances excitatory amino acid release and AMPA-stimulated 45Ca2+ influx in cultured neurons. Brain Research, 1992, 586, 72-77.	2.2	21
65	Interaction between ÄŸ-N-methylamino- l-alanine and excitatory amino acid receptors in brain slices and neuronal cultures. Brain Research, 1991, 558, 79-86.	2.2	69
66	Adenosine deaminase increases release of excitatory amino acids through a mechanism independent of adenosine depletion. Neuropharmacology, 1991, 30, 153-159.	4.1	16
67	Enhanced Sensitivity of "Metabotropic" Glutamate Receptors After Induction of Long-Term Potentiation in Rat Hippocampus. Journal of Neurochemistry, 1991, 57, 376-383.	3.9	58
68	Desensitization of Metabotropic Glutamate Receptors in Neuronal Cultures. Journal of Neurochemistry, 1991, 56, 1329-1335.	3.9	87
69	Excitatory Amino Acids Stimulate Inositol Phospholipid Hydrolysis and Reduce Proliferation in Cultured Astrocytes. Journal of Neurochemistry, 1990, 54, 771-777.	3.9	87
70	Desensitization of "metabotropic―glutamate receptors: Involvement of protein kinase C. Pharmacological Research, 1990, 22, 103.	7.1	O
71	Homologous desensitization of metabolotropic glutamate receptors in neuronal cultures. Pharmacological Research, 1990, 22, 79-80.	7.1	o
72	Metabotropic glutamate receptors and long-term potentiation (LTP) in rat hippocampus. Pharmacological Research, 1990, 22, 19.	7.1	2

#	Article	IF	CITATIONS
73	Enhanced sensitivity of "metabotropic―glutamate receptors after induction of long-term potentiation (LTP) in rat hippocampus. Pharmacological Research, 1990, 22, 50-51.	7.1	0
74	Gangliosides attenuate NHDA receptor-mediated excitatory amino acid release in cultured cerebellar neurons. Neuropharmacology, 1989, 28, 1283-1286.	4.1	17
75	Indolpyruvic acid (IPA) acts as an antagonist of Mg2+-sensitive glutamate receptors in cerebellar neurons. Pharmacological Research Communications, 1988, 20, 59.	0.2	O
76	Activation of excitatory amino acid receptors regulates growth and proliferation of glial cells in primary cultures. Pharmacological Research Communications, 1988, 20, 266.	0.2	0
77	Phorbol Esters Attenuate Glutamate-Stimulated Inositol Phospholipid Hydrolysis in Neuronal Cultures. Journal of Neurochemistry, 1988, 51, 1049-1053.	3.9	37