
Emmanuel Taillebourg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6859149/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Mammalian Cap-Specific m6Am RNA Methyltransferase PCIF1 Regulates Transcript Levels in Mouse Tissues. Cell Reports, 2020, 32, 108038.	6.4	50
2	A Nucleolar Isoform of the Drosophila Ubiquitin Specific Protease dUSP36 Regulates MYC-Dependent Cell Growth. Frontiers in Cell and Developmental Biology, 2020, 8, 506.	3.7	7
3	CHMP1B is a target of USP8/UBPY regulated by ubiquitin during endocytosis. PLoS Genetics, 2018, 14, e1007456.	3.5	37
4	Deubiquitinating Enzymes Related to Autophagy: New Therapeutic Opportunities?. Cells, 2018, 7, 112.	4.1	30
5	A functional endosomal pathway is necessary for lysosome biogenesis in Drosophila. BMC Cell Biology, 2016, 17, 36.	3.0	35
6	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
7	The Deubiquitinating Enzyme UBPY Is Required for Lysosomal Biogenesis and Productive Autophagy in Drosophila. PLoS ONE, 2015, 10, e0143078.	2.5	19
8	The <i>Drosophila</i> Deubiquitinating Enzyme dUSP36 Acts in the Hemocytes for Tolerance to <i>Listeria monocytogenes</i> Infections. Journal of Innate Immunity, 2014, 6, 632-638.	3.8	8
9	Identifying USPs regulating immune signals in Drosophila: USP2 deubiquitinates Imd and promotes its degradation by interacting with the proteasome. Cell Communication and Signaling, 2014, 12, 41.	6.5	28
10	The deubiquitinating enzyme USP36 controls selective autophagy activation by ubiquitinated proteins. Autophagy, 2012, 8, 767-779.	9.1	60
11	The AAA ⁺ ATPase ATAD3A Controls Mitochondrial Dynamics at the Interface of the Inner and Outer Membranes. Molecular and Cellular Biology, 2010, 30, 1984-1996.	2.3	124
12	The Drosophila Ubiquitin-Specific Protease dUSP36/Scny Targets IMD to Prevent Constitutive Immune Signaling. Cell Host and Microbe, 2009, 6, 309-320.	11.0	76
13	TM9SF4 is required for <i>Drosophila</i> cellular immunity via cell adhesion and phagocytosis. Journal of Cell Science, 2008, 121, 3325-3334.	2.0	44
14	Distinct roles of Hoxa2 and Krox20 in the development of rhythmic neural networks controlling inspiratory depth, respiratory frequency, and jaw opening. Neural Development, 2007, 2, 19.	2.4	27
15	Peripheral Myelin Maintenance Is a Dynamic Process Requiring Constant Krox20 Expression. Journal of Neuroscience, 2006, 26, 9771-9779.	3.6	145
16	In vivo evidence for a regulatory role of the kinase activity of the linotte/derailed receptor tyrosine kinase, a Drosophila Ryk ortholog. Development Genes and Evolution, 2005, 215, 158-163.	0.9	10
17	Mutation of linotte causes behavioral defects independently of pigeon in Drosophila. NeuroReport, 2002, 13, 2309-2312.	1.2	17
18	Conditional, floxed allele of theKrox20 gene. Genesis, 2002, 32, 112-113.	1.6	33

#	Article	IF	CITATIONS
19	<i>Krox-20</i> patterns the hindbrain through both cell-autonomous and non cell-autonomous mechanisms. Genes and Development, 2001, 15, 567-580.	5.9	100
20	Hindbrain patterning: <i>Krox20</i> couples segmentation and specification of regional identity. Development (Cambridge), 2001, 128, 4967-4978.	2.5	85
21	The receptor tyrosine kinase gene linotte is required for neuronal pathway selection in the Drosophila mushroom bodies. Mechanisms of Development, 1998, 78, 47-61.	1.7	68
22	The Drosophila learning and memory genelinotteencodes a putative receptor tyrosine kinase homologous to the human RYK gene product. FEBS Letters, 1995, 370, 250-254.	2.8	61