Marina Gutiérrez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6858540/publications.pdf

Version: 2024-02-01

		840776	580821
57	705	11	25
papers	citations	h-index	g-index
57	57	57	597
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Diamond/Î ³ -alumina band offset determination by XPS. Applied Surface Science, 2021, 535, 146301.	6.1	14
2	Study of Early Stages in the Growth of Boronâ€Doped Diamond on Carbon Fibers. Physica Status Solidi (A) Applications and Materials Science, 2021, 218, 2000284.	1.8	1
3	Analysis by HR-STEM of the Strain Generation in InP after SiNx Deposition and ICP Etching. Journal of Electronic Materials, 2020, 49, 5226-5231.	2.2	1
4	Interfacial integrity enhancement of atomic layer deposited alumina on boron doped diamond by surface plasma functionalization. Surface and Coatings Technology, 2020, 397, 125991.	4.8	4
5	How to Grow Fully (100) Oriented SiC/Si/SiC/Si Multiâ€Stack. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1800588.	1.8	O
6	High quality Al2O3/(100) oxygen-terminated diamond interface for MOSFETs fabrication. Applied Physics Letters, 2018, 112, .	3.3	19
7	Impact of Nonhomoepitaxial Defects in Depleted Diamond MOS Capacitors. IEEE Transactions on Electron Devices, 2018, 65, 1830-1837.	3.0	6
8	Direct growth of InAs/GaSb type II superlattice photodiodes on silicon substrates. IET Optoelectronics, 2018, 12, 2-4.	3.3	16
9	GaSb and GaSb/AlSb Superlattice Buffer Layers for High-Quality Photodiodes Grown on Commercial GaAs and Si Substrates. Journal of Electronic Materials, 2018, 47, 5083-5086.	2.2	4
10	Determination of alumina bandgap and dielectric functions of diamond MOS by STEM-VEELS. Applied Surface Science, 2018, 461, 93-97.	6.1	16
11	Silicon (001) Heteroepitaxy on 3C-SiC(001)/Si(001) Seed. Materials Science Forum, 2018, 924, 128-131.	0.3	O
12	Control of the Alumina Microstructure to Reduce Gate Leaks in Diamond MOSFETs. Nanomaterials, 2018, 8, 584.	4.1	6
13	2.5-µm InGaAs photodiodes grown on GaAs substrates by interfacial misfit array technique. Infrared Physics and Technology, 2017, 81, 320-324.	2.9	11
14	Solid solution strengthening in GaSb/GaAs: A mode to reduce the TD density through Be-doping. Applied Physics Letters, 2017, 110, .	3.3	13
15	MPCVD Diamond Lateral Growth Through Microterraces to Reduce Threading Dislocations Density. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1700242.	1.8	4
16	Twins and strain relaxation in zinc-blende GaAs nanowires grown on silicon. Applied Surface Science, 2017, 395, 195-199.	6.1	6
17	Proton radiation effect on InAs avalanche photodiodes. Optics Express, 2017, 25, 2818.	3.4	3
18	Quantification of InxGa1â^'xP composition modulation by nanometric scale HAADF simulations. Applied Surface Science, 2013, 269, 138-142.	6.1	6

#	Article	IF	CITATIONS
19	Composition modulation analysis of InxGa1â^'xP layers grown on (001) germanium substrates. Applied Surface Science, 2010, 256, 5681-5683.	6.1	1
20	InAs/GaAs quantum dots morphology: Nanometric scale HAADF simulations. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2009, 165, 88-93.	3.5	2
21	Effects of alloy intermixing on the lateral confinement potential in InAsâ^•GaAs self-assembled quantum dots probed by intersublevel absorption spectroscopy. Applied Physics Letters, 2007, 90, 163107.	3.3	19
22	High performance $1.3\hat{l}^{1}\!\!/4$ m InAs/GaAs quantum dot lasers with low threshold current and negative characteristic temperature. , 2006, 6184, 374.		6
23	High-performance 1.3â€Âµm InAs/GaAs quantum-dot lasers with low threshold current and negative characteristic temperature. IEE Proceedings: Optoelectronics, 2006, 153, 280-283.	0.8	7
24	Influence of structure and defects on the performance of dot-in-well laser structures. , 2005, , .		1
25	Growth and characterization of multiple layer quantum dot lasers. , 2005, , .		2
26	Effect of the growth parameters on the structure and morphology of InAs/InGaAs/GaAs DWELL quantum dot structures. Journal of Crystal Growth, 2005, 278, 151-155.	1.5	11
27	Lasing and spontaneous emission characteristics of $1.3\hat{l}$ /4m ln(Ga)As quantum-dot lasers. Physica E: Low-Dimensional Systems and Nanostructures, 2005, 26, 382-385.	2.7	6
28	Strain interactions and defect formation in stacked InGaAs quantum dot and dot-in-well structures. Physica E: Low-Dimensional Systems and Nanostructures, 2005, 26, 245-251.	2.7	10
29	Structural and optical properties of high In and N content GalnNAs quantum wells. Thin Solid Films, 2005, 483, 185-190.	1.8	6
30	Optimizing the growth of $1.3-\hat{1}\frac{1}{4}$ m InAs/InGaAs dots-in-a-well structure: Achievement of high-performance laser. Materials Science and Engineering C, 2005, 25, 779-783.	7.3	10
31	Critical barrier thickness for the formation of InGaAs/GaAs quantum dots. Materials Science and Engineering C, 2005, 25, 798-803.	7.3	5
32	Characterization of structure and defects in dot-in-well laser structures. Materials Science and Engineering C, 2005, 25, 793-797.	7.3	1
33	Spinodal decomposition in GalnNAs/GaAs multi-quantum wells. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 1292-1297.	0.8	0
34	Growth and Characterization of $1.3 \hat{1}/4$ m Multi-Layer Quantum Dots Lasers Incorporating High Growth Temperature Spacer Layers. AIP Conference Proceedings, 2005, , .	0.4	0
35	Composition modulation in GalnNAs quantum wells: Comparison of experiment and theory. Journal of Applied Physics, 2005, 97, 073705.	2.5	14
36	An approach to the formation mechanism of the composition fluctuation in GalnNAs quantum wells. Semiconductor Science and Technology, 2005, 20, 1096-1102.	2.0	5

#	Article	lF	CITATIONS
37	Unfaulting of dislocation loops in the GalnNAs alloy: An estimation of the stacking fault energy. Journal of Applied Physics, 2005, 98, 023521.	2.5	6
38	Influence of growth temperature on the structural and optical quality of GalnNAs/GaAs multi-quantum wells. Semiconductor Science and Technology, 2004, 19, 813-818.	2.0	20
39	Improved performance of 1.3νm multilayer InAs quantum-dot lasers using a high-growth-temperature GaAs spacer layer. Applied Physics Letters, 2004, 85, 704-706.	3.3	267
40	Influences of the spacer layer growth temperature on multilayer InAsâ^•GaAs quantum dot structures. Journal of Applied Physics, 2004, 96, 1988-1992.	2.5	85
41	Investigations of $1.55-\hat{1}\frac{1}{4}$ m GalnNAs/GaAs heterostructures by optical spectroscopy. IEE Proceedings: Optoelectronics, 2004, 151, 331-334.	0.8	2
42	Structural defects characterisation of GalnNAs MQWs by TEM and PL. IEE Proceedings: Optoelectronics, 2004, 151, 385-388.	0.8	3
43	Composition fluctuations in GalnNAs multi-quantum wells. IEE Proceedings: Optoelectronics, 2004, 151, 271-274.	0.8	0
44	Improvement in the optical quality of GalnNAs/GalnAs quantum well structures by interfacial strain reduction. IEE Proceedings: Optoelectronics, 2004, 151, 301-304.	0.8	2
45	Structural and optical quality of InGaAsN quantum wells grown on misoriented GaAs (111)b substrates by molecular beam epitaxy. Journal of Crystal Growth, 2004, 270, 62-68.	1.5	8
46	Improving optical properties of 1.55 \hat{l}^{1} 4m GalnNAs/GaAs multiple quantum wells with Ga(In)NAs barrier and space layer. Applied Physics Letters, 2003, 83, 4951-4953.	3.3	44
47	Strain relaxation behavior of InxGa1â^'xAs quantum wells on vicinal GaAs (111)B substrates. Applied Physics Letters, 2002, 80, 1541-1543.	3.3	7
48	Relaxation study of AlGaAs cladding layers in InGaAs/GaAs (111)B lasers designed for 1.0–1.1μm operation. Microelectronics Journal, 2002, 33, 553-557.	2.0	2
49	The role of climb and glide in misfit relief of InGaAs/GaAs(111)B heterostructures. Microelectronics Journal, 2002, 33, 559-563.	2.0	0
50	Effect of graded buffer design on the defect structure in InGaAs/GaAs (111)B heterostructures. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2001, 80, 27-31.	3.5	5
51	Influence of substrate misorientation on the optical and structural properties of InGaAs/GaAs single strained quantum wells grown on (111)B GaAs by molecular beam epitaxy. Microelectronics Journal, 1999, 30, 373-378.	2.0	1
52	Cathodoluminescence study of pyramidal facets in piezoelectric InGaAs/GaAs multiple quantum well pin photodiodes. Microelectronics Journal, 1999, 30, 427-431.	2.0	3
53	New relaxation mechanisms in InGaAs/GaAs (111) multiple quantum well. Microelectronics Journal, 1999, 30, 467-470.	2.0	4
54	Optical properties of InxGa1â^'xAs/GaAs MQW structures on (111)B GaAs grown by MBE: dependence on substrate miscut. Journal of Crystal Growth, 1999, 201-202, 1085-1088.	1.5	3

#	Article	IF	CITATIONS
55	Relaxation study of InxGa1â^'xAs/GaAs quantum-well structures grown by MBE on (001) and (111)B GaAs for long wavelength applications. Journal of Crystal Growth, 1999, 206, 287-293.	1.5	4
56	Influence of substrate misorientation on the structural characteristics of InGaAs/GaAs MQW on (111)B GaAs grown by MBE. Thin Solid Films, 1999, 343-344, 558-561.	1.8	3
57	Activation energy for surface diffusion in GalnNAs quantum wells. , 0, , 279-282.		O