Anne Dubart-Kupperschmitt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6858046/publications.pdf

Version: 2024-02-01

85 papers 3,561 citations

30 h-index 58 g-index

87 all docs

87 docs citations

87 times ranked

4347 citing authors

#	Article	IF	CITATIONS
1	In vitro recovery of FIX clotting activity as a marker of highly functional hepatocytes in a hemophilia B iPSC model. Hepatology, 2022, 75, 866-880.	7.3	12
2	Evidence of Adult Features and Functions of Hepatocytes Differentiated from Human Induced Pluripotent Stem Cells and Self-Organized as Organoids. Cells, 2022, 11, 537.	4.1	10
3	A versatile microfluidic tool for the 3D culture of HepaRG cells seeded at various stages of differentiation. Scientific Reports, 2021, 11, 14075.	3.3	9
4	Advanced Techniques and Awaited Clinical Applications for Human Pluripotent Stem Cell Differentiation into Hepatocytes. Hepatology, 2021, 74, 1101-1116.	7.3	29
5	HepaRG Self-Assembled Spheroids in Alginate Beads Meet the Clinical Needs for Bioartificial Liver. Tissue Engineering - Part A, 2020, 26, 613-622.	3.1	13
6	Liver Regeneration and Recanalization Time Course following Repeated Reversible Portal Vein Embolization in Swine. European Surgical Research, 2020, 61, 62-71.	1.3	2
7	Pluripotent stem cell-derived cholangiocytes and cholangiocyte organoids. Methods in Cell Biology, 2020, 159, 69-93.	1.1	4
8	Pluripotent-Stem-Cell-Derived Hepatic Cells: Hepatocytes and Organoids for Liver Therapy and Regeneration. Cells, 2020, 9, 420.	4.1	61
9	iPSCs for modeling familial hypercholesterolemia type II A. , 2020, , 201-219.		0
10	Low-density lipoprotein receptor-deficient hepatocytes differentiated from induced pluripotent stem cells allow familial hypercholesterolemia modeling, CRISPR/Cas-mediated genetic correction, and productive hepatitis C virus infection. Stem Cell Research and Therapy, 2019, 10, 221.	5 . 5	30
11	Improving Hepatocyte Engraftment Following Hepatocyte Transplantation Using Repeated Reversible Portal Vein Embolization in Rats. Liver Transplantation, 2019, 25, 98-110.	2.4	9
12	Genomic integrity of human induced pluripotent stem cells: Reprogramming, differentiation and applications. World Journal of Stem Cells, 2019, 11, 729-747.	2.8	19
13	Differentiation of human pluripotent stem cells into hepatocytes is more efficient in spheroids than in 2D culture. Journal of Hepatology, 2018, 68, S412-S413.	3.7	O
14	Low density lipoprotein receptor-deficient hepatocytes differentiated from induced pluripotent stem cells allow familial Hypercholesterolemia modelling, CRISPR/Cas-mediated genetic correction, and productive hepatitis C virus infection. Journal of Hepatology, 2018, 68, S82.	3.7	1
15	Autologous cell/gene therapy approach of hemophilia B using patient specific induced Pluripotent Stem Cells. Journal of Hepatology, 2018, 68, S81-S82.	3.7	O
16	Advanced cellâ€based modeling of the royal disease: characterization of the mutated F9mRNA. Journal of Thrombosis and Haemostasis, 2017, 15, 2188-2197.	3.8	6
17	Hepatocytic Differentiation Potential of Human Fetal Liver Mesenchymal Stem Cells: <i>In Vitro</i> and <i>In Vivo</i> Evaluation. Stem Cells International, 2016, 2016, 1-12.	2.5	11
18	Volumetric Portal Embolization. Transplantation, 2016, 100, 344-354.	1.0	11

#	Article	IF	Citations
19	Liver regeneration following repeated reversible portal vein embolization in an experimental model. British Journal of Surgery, 2016, 103, 1209-1219.	0.3	15
20	Lentiviral gene rescue of a Bernard–Soulier mouse model to study platelet glycoprotein Ibβ function. Journal of Thrombosis and Haemostasis, 2016, 14, 1470-1479.	3.8	6
21	Rapid and reliable diagnosis of Wilson disease using Xâ€ray fluorescence. Journal of Pathology: Clinical Research, 2016, 2, 175-186.	3.0	18
22	Induced Pluripotent Stem Cells (IPSCS) from a Patient with Familial Hypercholesterolemia: A Novel Model to Study LDL Receptor Functions and Targeted Recombination. Journal of Hepatology, 2016, 64, S300-S301.	3.7	0
23	The potential of induced pluripotent stem cell derived hepatocytes. Journal of Hepatology, 2016, 65, 182-199.	3.7	80
24	An Atypical Human Induced Pluripotent Stem Cell Line With a Complex, Stable, and Balanced Genomic Rearrangement Including a Large De Novo 1q Uniparental Disomy. Stem Cells Translational Medicine, 2015, 4, 224-229.	3.3	6
25	Genome Editing and Dialogic Responsibility: "What's in a Name?― American Journal of Bioethics, 2015, 15, 54-57.	0.9	1
26	Transplantation of hESC-derived hepatocytes protects mice from liver injury. Stem Cell Research and Therapy, 2015, 6, 246.	5.5	69
27	Generation of functional cholangiocyteâ€like cells from human pluripotent stem cells and HepaRG cells. Hepatology, 2014, 60, 700-714.	7.3	177
28	Messenger RNA- Versus Retrovirus-Based Induced Pluripotent Stem Cell Reprogramming Strategies: Analysis of Genomic Integrity. Stem Cells Translational Medicine, 2014, 3, 686-691.	3.3	30
29	A Population of Human Mesenchymal Stem Cells Specific to the Fetal Liver Development. Journal of Stem Cell Research & Therapy, 2014, 04, .	0.3	4
30	<i>In vitro</i> generated Rh _{null} red cells recapitulate the <i>in vivo</i> deficiency: A model for rare blood group phenotypes and erythroid membrane disorders. American Journal of Hematology, 2013, 88, 343-349.	4.1	17
31	Integration-deficient lentivectors: an effective strategy to purify and differentiate human embryonic stem cell-derived hepatic progenitors. BMC Biology, 2013, 11, 86.	3.8	20
32	295 HUMAN INDUCED PLURIPOTENT STEM CELLS (iPSCs) REPROGRAMMED WITH HOME-MADE-mRNAs: A TOOL FOR STEM-CELL DERIVED HEPATOCYTE STUDIES. Journal of Hepatology, 2013, 58, S124.	3.7	0
33	Human Pluripotent Stem Cells for Modelling Human Liver Diseases and Cell Therapy. Current Gene Therapy, 2013, 13, 120-132.	2.0	55
34	Stem Cell Factor-Displaying Simian Immunodeficiency Viral Vectors Together with a Low Conditioning Regimen Allow for Long-Term Engraftment of Gene-Marked Autologous Hematopoietic Stem Cells in Macaques. Human Gene Therapy, 2012, 23, 754-768.	2.7	10
35	1101 LENTIVIRAL VECTOR-MEDIATED PURIFICATION OF HEPATIC PROGENITORS DIFFERENTIATED FROM HUMAN EMBRYONIC STEM CELLS. Journal of Hepatology, 2011, 54, S436.	3.7	O
36	E-Cadherin/p120-Catenin and Tetraspanin Co-029 Cooperate for Cell Motility Control in Human Colon Carcinoma. Cancer Research, 2010, 70, 7674-7683.	0.9	77

#	Article	IF	CITATIONS
37	Spontaneous and Fas-induced apoptosis of low-grade MDS erythroid precursors involves the endoplasmic reticulum. Leukemia, 2008, 22, 1864-1873.	7.2	27
38	FOXO1 Regulates L-Selectin and a Network of Human T Cell Homing Molecules Downstream of Phosphatidylinositol 3-Kinase. Journal of Immunology, 2008, 181, 2980-2989.	0.8	181
39	Silencing of OB-RGRP in mouse hypothalamic arcuate nucleus increases leptin receptor signaling and prevents diet-induced obesity. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 19476-19481.	7.1	92
40	Caspase-8 prevents sustained activation of NF- $\hat{\mathbb{P}}$ B in monocytes undergoing macrophagic differentiation. Blood, 2007, 109, 1442-1450.	1.4	125
41	Glycoprotein Ibî± Promoter Drives Megakaryocytic Lineage-Restricted Expression After Hematopoietic Stem Cell Transduction Using a Self-Inactivating Lentiviral Vector. Stem Cells, 2007, 25, 1571-1577.	3.2	12
42	PO30 A role for the endoplasmic reticulum in the apoptosis of erythroid precursors in low risk myelodysplastic syndromes. Leukemia Research, 2007, 31, S57.	0.8	0
43	Fas-Dependent Apoptosis in Early MDS Erythroid Precursors Involves Endoplasmic Reticulum Blood, 2007, 110, 3346-3346.	1.4	0
44	Expression of Pitx2 in stromal cells is required for normal hematopoiesis. Blood, 2006, 107, 492-500.	1.4	31
45	Expression of human CD81 differently affects host cell susceptibility to malaria sporozoites depending on the Plasmodium species. Cellular Microbiology, 2006, 8, 1134-1146.	2.1	94
46	Lentivirus degradation and DC-SIGN expression by human platelets and megakaryocytes. Journal of Thrombosis and Haemostasis, 2006, 4, 426-435.	3.8	66
47	Both the Endoplasmic Reticulum and the Mitochondria Are Involved in Apoptosis of Erythroid Precursors in Low Grade Myelodysplastic Syndromes Blood, 2006, 108, 2638-2638.	1.4	0
48	Novel lentiviral vectors displaying "early-acting cytokines―selectively promote survival and transduction of NOD/SCID repopulating human hematopoietic stem cells. Blood, 2005, 106, 3386-3395.	1.4	42
49	SCL/TAL1 expression level regulates human hematopoietic stem cell self-renewal and engraftment. Blood, 2005, 106, 2318-2328.	1.4	45
50	Rescue of early-stage myelodysplastic syndrome-deriving erythroid precursors by the ectopic expression of a dominant-negative form of FADD. Blood, 2005, 105, 4035-4042.	1.4	58
51	NACA is a positive regulator of human erythroid-cell differentiation. Journal of Cell Science, 2005, 118, 1595-1605.	2.0	17
52	Human CD34+ cells differentiate into microglia and express recombinant therapeutic protein. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 3557-3562.	7.1	150
53	Thrombopoietin-induced Dami cells as a model for α-granule biogenesis. Platelets, 2004, 15, 341-344.	2.3	5
54	Probing platelet factor 4 alpha-granule targeting. Journal of Thrombosis and Haemostasis, 2004, 2, 2231-2240.	3.8	19

#	Article	IF	CITATIONS
55	Characterization of DNA-binding-dependent and -independent functions of SCL/TAL1 during human erythropoiesis. Blood, 2004, 103, 3326-3335.	1.4	44
56	Novel Lentiviral Vectors Displaying â€~Early-Acting-Cytokines' Preferentially Promote the Survival and Transduction of NOD/SCID Repopulating Human Hematopoietic Stem Cells Blood, 2004, 104, 2107-2107.	1.4	4
57	Ex vivo expansion of human hematopoietic stem cells by direct delivery of the HOXB4 homeoprotein. Nature Medicine, 2003, 9, 1423-1427.	30.7	254
58	Transduced CD34+ cells from adrenoleukodystrophy patients with HIV-derived vector mediate long-term engraftment of NOD/SCID mice. Molecular Therapy, 2003, 7, 317-324.	8.2	57
59	Successful Transduction of Human Multipotent, Lymphoid (T, B, NK) and Myeloid, and Transplantable CD34+CD38lowCord Blood Cells Using a Murine Oncoretroviral Vector. Journal of Hematotherapy and Stem Cell Research, 2002, 11, 327-336.	1.8	2
60	Requirement for mitogen-activated protein kinase activation in the response of embryonic stem cellâ€"derived hematopoietic cells to thrombopoietin in vitro. Blood, 2002, 99, 1174-1182.	1.4	16
61	Maximal Lentivirus-Mediated Gene Transfer and Sustained Transgene Expression in Human Hematopoietic Primitive Cells and Their Progeny. Molecular Therapy, 2002, 6, 673-677.	8.2	9
62	Maximal lentivirus-mediated gene transfer and sustained transgene expression in human hematopoietic primitive cells and their progeny. Molecular Therapy, 2002, 6, 673-7.	8.2	13
63	Enhanced Transgene Expression in Cord Blood CD34+-Derived Hematopoietic Cells, Including Developing T Cells and NOD/SCID Mouse Repopulating Cells, Following Transduction with Modified TRIP Lentiviral Vectors. Molecular Therapy, 2001, 3, 438-448.	8.2	150
64	Lentivirus-mediated gene transfer in primary T cells is enhanced by a central DNA flap. Gene Therapy, 2001, 8, 190-198.	4.5	94
65	Embryonic stem cell differentiation to hematopoietic cells. Experimental Hematology, 2000, 28, 1363-1372.	0.4	11
66	The human immunodeficiency virus type-1 central DNA flap is a crucial determinant for lentiviral vector nuclear import and gene transduction of human hematopoietic stem cells. Blood, 2000, 96, 4103-4110.	1.4	212
67	Regulation of Id Gene Expression during Embryonic Stem Cell-Derived Hematopoietic Differentiation. Biochemical and Biophysical Research Communications, 2000, 276, 803-812.	2.1	22
68	Expression of a foreign protein in human megakaryocytes and platelets by retrovirally mediated gene transfer. Experimental Hematology, 1999, 27, 110-116.	0.4	11
69	Retrovirus-Mediated Gene Transfer into Human CD34 ⁺ 38 ^{low} Primitive Cells Capable of Reconstituting Long-Term Cultures <i>In Vitro</i> and Nonobese Diabetic–Severe Combined Immunodeficiency Mice <i>In Vivo</i> . Human Gene Therapy, 1998, 9, 1497-1511.	2.7	84
70	Hematopoietic-promoting activity of the murine stromal cell line MS-5 is not related to the expression of the major hematopoietic cytokines. Journal of Cellular Physiology, 1995, 163, 295-304.	4.1	43
71	Murine pluripotent hematopoietic progenitors constitutively expressing a normal erythropoietin receptor proliferate in response to erythropoietin without preferential erythroid cell differentiation Molecular and Cellular Biology, 1994, 14, 4834-4842.	2.3	42
72	Identification of a new mutation responsible for hepatoerythropoietic porphyria. European Journal of Clinical Investigation, 1991, 21, 225-229.	3.4	40

#	Article	IF	CITATIONS
73	Autocrine stimulation by erythropoietin and autonomous growth of human erythroid leukemic cells in vitro Journal of Clinical Investigation, 1991, 88, 789-797.	8.2	49
74	Alternative transcription and splicing of the human porphobilinogen deaminase gene result either in tissue-specific or in housekeeping expression Proceedings of the National Academy of Sciences of the United States of America, 1988, 85, 6-10.	7.1	328
75	Structure of the gene for human uroporphyrinogen decarboxylase. Nucleic Acids Research, 1987, 15, 7343-7356.	14.5	62
76	Assignment of human uroporphyrinogen decarboxylase (URO-D) to the p34 band of chromosome 1. Human Genetics, 1986, 73, 277-279.	3.8	26
77	Molecular cloning and complete primary sequence of human erythrocyte porphobilinogen deaminase. Nucleic Acids Research, 1986, 14, 5955-5968.	14.5	137
78	Cell-free translation of human uroporphyrinogen decarboxylase mRNAs. Biochemical and Biophysical Research Communications, 1984, 118, 378-382.	2.1	2
79	Cell-free translation of messenger RNA for human bisphospho-glyceromutase. Biochemical and Biophysical Research Communications, 1984, 120, 441-447.	2.1	9
80	Lasting Hb F Reactivation and Hb A ₂ Reduction Induced by the Treatment of Hodgkin's Disease in a Woman Heterozygous for Beta-Thalassemia and the Swiss Type of the Heterocellular Hereditary Persistence of Hb F. Acta Haematologica, 1982, 67, 275-284.	1.4	3
81	Elevated Hb F Associated with βâ€Thalassaemia Trait: Haemoglobin Synthesis in Reticulocytes and in Blood BFUâ€E. Scandinavian Journal of Haematology, 1981, 25, 339-346.	0.0	6
82	Hemoglobin Synthesis in 7-Day and 14-Day-Old Erythroid Colonies from the Bone Marrow of Normal Individuals. Hemoglobin, 1980, 4, 53-67.	0.8	14
83	Fetal hemoglobin synthesis in culture of early erythroid precursors (BFU-E) from the blood of normal adults. Journal of Cellular Physiology, 1980, 102, 297-303.	4.1	6
84	Globinâ€Chain Affinity Chromatography on Sepharoseâ€Haptoglobin a New Method of Study of Hemoglobin Synthesis in Reticulocytes, in Bone Marrow and in Colonies of Erythroid Precursors. FEBS Journal, 1980, 112, 513-519.	0.2	16
85	Fetal to adult hemoglobin switch in cultures of early erythroid precursors from human fetuses and neonates. American Journal of Hematology, 1979, 7, 207-218.	4.1	19