
## **Dolores Planelles**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/685799/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | A germline variant in the TP53 polyadenylation signal confers cancer susceptibility. Nature Genetics, 2011, 43, 1098-1103.                                                                                                                 | 21.4 | 251       |
| 2  | Standardized, unrelated donor cord blood transplantation in adults with hematologic malignancies.<br>Blood, 2001, 98, 2332-2338.                                                                                                           | 1.4  | 220       |
| 3  | A variant in FTO shows association with melanoma risk not due to BMI. Nature Genetics, 2013, 45, 428-432.                                                                                                                                  | 21.4 | 111       |
| 4  | Cord Blood Transplantation from Unrelated Donors in Adults with High-Risk Acute Myeloid Leukemia.<br>Biology of Blood and Marrow Transplantation, 2010, 16, 86-94.                                                                         | 2.0  | 79        |
| 5  | Comparison between two strategies for umbilical cord blood collection. Bone Marrow<br>Transplantation, 2003, 31, 269-273.                                                                                                                  | 2.4  | 61        |
| 6  | New basal cell carcinoma susceptibility loci. Nature Communications, 2015, 6, 6825.                                                                                                                                                        | 12.8 | 59        |
| 7  | Germline sequence variants in TGM3 and RGS22 confer risk of basal cell carcinoma. Human Molecular<br>Genetics, 2014, 23, 3045-3053.                                                                                                        | 2.9  | 48        |
| 8  | Impact on Outcomes of Human Leukocyte AntigenÂMatching by Allele-Level Typing in Adults withÂAcute<br>Myeloid Leukemia Undergoing Umbilical CordÂBlood Transplantation. Biology of Blood and Marrow<br>Transplantation, 2014, 20, 106-110. | 2.0  | 48        |
| 9  | Telomere length, telomerase reverse transcriptase promoter mutations, and melanoma risk. Genes Chromosomes and Cancer, 2018, 57, 564-572.                                                                                                  | 2.8  | 39        |
| 10 | Unrelated donor cord blood transplantation in adults with chronic myelogenous leukemia: results in nine patients from a single institution. Bone Marrow Transplantation, 2001, 27, 693-701.                                                | 2.4  | 37        |
| 11 | Variants at the 9p21 locus and melanoma risk. BMC Cancer, 2013, 13, 325.                                                                                                                                                                   | 2.6  | 35        |
| 12 | Red blood cell depletion with a semiautomated system or hydroxyethyl starch sedimentation for routine cord blood banking: a comparative study. Transfusion, 2005, 45, 867-873.                                                             | 1.6  | 33        |
| 13 | Single-nucleotide polymorphisms in DNA-repair genes and cutaneous melanoma. Mutation Research -<br>Genetic Toxicology and Environmental Mutagenesis, 2010, 702, 8-16.                                                                      | 1.7  | 30        |
| 14 | Single-Unit Umbilical Cord Blood Transplantation fromÂUnrelated Donors in Adult Patients with<br>Chronic Myelogenous Leukemia. Biology of Blood and Marrow Transplantation, 2010, 16, 1589-1595.                                           | 2.0  | 30        |
| 15 | Impact of hematopoietic chimerism at day +14 on engraftment after unrelated donor umbilical cord<br>blood transplantation for hematologic malignancies. Haematologica, 2009, 94, 827-832.                                                  | 3.5  | 29        |
| 16 | Variants at chromosome 20 ( <i>ASIP</i> locus) and melanoma risk. International Journal of Cancer, 2013, 132, 42-54.                                                                                                                       | 5.1  | 28        |
| 17 | Qualitative and quantitative cell recovery in umbilical cord blood processed by two automated devices in routine cord blood banking: a comparative study. Blood Transfusion, 2013, 11, 405-11.                                             | 0.4  | 28        |
| 18 | Optimizing donor selection in a cord blood bank. European Journal of Haematology, 2004, 72, 107-112.                                                                                                                                       | 2.2  | 27        |

**DOLORES PLANELLES** 

| #  | Article                                                                                                                                                                                                                                     | IF    | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------|
| 19 | High-resolution characterization of allelic and haplotypic HLA frequency distribution in a Spanish population using high-throughput next-generation sequencing. Human Immunology, 2019, 80, 429-436.                                        | 2.4   | 23        |
| 20 | Influence of volume reduction and cryopreservation methodologies on quality of thawed umbilical cord blood units for transplantation. Cryobiology, 2008, 56, 152-158.                                                                       | 0.7   | 22        |
| 21 | Transmission of human immunodeficiency virus <scp>T</scp> ypeâ€1 by freshâ€frozen plasma treated with<br>methylene blue and light. Transfusion, 2016, 56, 831-836.                                                                          | 1.6   | 22        |
| 22 | HLA class II polymorphisms in Spanish melanoma patients: homozygosity for HLA-DQA1 locus can be a potential melanoma risk factor. British Journal of Dermatology, 2006, 154, 261-266.                                                       | 1.5   | 21        |
| 23 | rs12512631 on the Group Specific Complement (Vitamin D-Binding Protein GC) Implicated in Melanoma<br>Susceptibility. PLoS ONE, 2013, 8, e59607.                                                                                             | 2.5   | 21        |
| 24 | A new automatic device for routine cord blood banking: critical analysis of different volume reduction methodologies. Cytotherapy, 2009, 11, 1101-1107.                                                                                     | 0.7   | 19        |
| 25 | Effect of CD8+ Cell Content on Umbilical Cord Blood Transplantation in Adults with Hematological<br>Malignancies. Biology of Blood and Marrow Transplantation, 2014, 20, 1744-1750.                                                         | 2.0   | 19        |
| 26 | Allelic distribution and the effect of haplotype combination for HLA type II loci in the celiac disease population of the Valencian community (Spain). Tissue Antigens, 2009, 73, 255-261.                                                  | 1.0   | 17        |
| 27 | High-resolution HLA allele and haplotype frequencies in several unrelated populations determined by<br>next generation sequencing: 17th International HLA and Immunogenetics Workshop joint report.<br>Human Immunology, 2021, 82, 505-522. | 2.4   | 17        |
| 28 | HLA-DQA, -DQB AND -DRB ALLELE CONTRIBUTION TO NARCOLEPSY SUSCEPTIBILITY. International Journal of Immunogenetics, 1997, 24, 409-421.                                                                                                        | 1.2   | 16        |
| 29 | Influence of Genetic Variants in Type I Interferon Genes on Melanoma Survival and Therapy. PLoS ONE, 2012, 7, e50692.                                                                                                                       | 2.5   | 16        |
| 30 | HLA-DQ: Celiac disease <i>vs</i> inflammatory bowel disease. World Journal of Gastroenterology, 2018, 24, 96-103.                                                                                                                           | 3.3   | 16        |
| 31 | A New Microplate Red Blood Cell Monolayer Technique for Screening and Identifying Red Blood Cell<br>Antibodies. Vox Sanguinis, 1996, 70, 152-156.                                                                                           | 1.5   | 14        |
| 32 | A Monolayer Coagglutination Microplate Technique for Typing Red Blood Cells. Vox Sanguinis, 1997,<br>72, 26-30.                                                                                                                             | 1.5   | 14        |
| 33 | Utility of bag segment and cryovial samples for quality control and confirmatory HLA typing in umbilical cord blood banking. International Journal of Laboratory Hematology, 2004, 26, 413-418.                                             | 0.2   | 14        |
| 34 | Seasonal variation in proliferative response and subpopulations of lymphocytes from mice housed in a constant environment. Cell Proliferation, 1994, 27, 333-341.                                                                           | 5.3   | 13        |
| 35 | Characterization of seven new HLA alleles, <i>A*24:14:01:04</i> , <i>A*29:02:01:07</i> , <i>C*06:02:01:37</i> , <i>C*07:830</i> , <i>C*16:162</i> , <i>C*16:01:01:07</i> and <i>DQA1*01:02:05</i> . Hla, 2019, 94, 521-522.                 | , 0.6 | 12        |
| 36 | Outcome and Prognostic Factors after Unrelated Donor Umbilical Cord Blood Transplantation in<br>Adult Patients with Hematologic Malignancies Transplanted in Early Disease Stages Blood, 2004, 104,<br>2149-2149.                           | 1.4   | 12        |

DOLORES PLANELLES

| #  | Article                                                                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | HCV screening in blood donations using RT-PCR in mini-pool: the experience in Spain after routine use for 2 years. Transfusion, 2003, 43, 713-720.                                                                     | 1.6 | 11        |
| 38 | Genetic analyses of celiac disease in a Spanish population confirm association with CELIAC3 but not with CELIAC4. Tissue Antigens, 2007, 70, 324-329.                                                                  | 1.0 | 11        |
| 39 | Analysis of the CDKN2A and CDK4 Genes and HLA-DR and HLA-DQ Alleles in Two Spanish Familial<br>Melanoma Kindreds. Acta Dermato-Venereologica, 2000, 80, 440-442.                                                       | 1.3 | 10        |
| 40 | Prolonged hepatitis C virus seroconversion in a blood donor, detected by HCV Antigen test in parallel with HCV RNA. Vox Sanguinis, 2004, 86, 266-267.                                                                  | 1.5 | 9         |
| 41 | Adoptive transfer of ex vivo expanded SARSâ€CoVâ€2â€specific cytotoxic lymphocytes: A viable strategy for<br>COVIDâ€19 immunosuppressed patients?. Transplant Infectious Disease, 2021, 23, e13602.                    | 1.7 | 9         |
| 42 | Molecular Genetic Analysis of HLA-DR and -DQ Alleles in Spanish Patients with Melanoma. Acta<br>Dermato-Venereologica, 2002, 82, 90-93.                                                                                | 1.3 | 7         |
| 43 | Significance of Increased Blastic-Appearing Cells in Bone Marrow Following Myeloablative Unrelated<br>Cord Blood Transplantation in Adult Patients. Biology of Blood and Marrow Transplantation, 2012, 18,<br>388-395. | 2.0 | 7         |
| 44 | Trypanosoma rangeli in a blood donor at the Valencian Blood Transfusion Centre. Vox Sanguinis,<br>2010, 99, 193-194.                                                                                                   | 1.5 | 6         |
| 45 | Allogeneic hematopoietic cell transplantation in an adult patient with Glanzmann thrombasthenia.<br>Clinical Case Reports (discontinued), 2017, 5, 1887-1890.                                                          | 0.5 | 6         |
| 46 | <i>HLAâ€B*40:462</i> was likely generated by a recombination event between <i>B*40:01:02</i> and <i>B*13:02:01</i> . Hla, 2020, 96, 518-519.                                                                           | 0.6 | 6         |
| 47 | A new, fast, and simple DNA extraction method for HLA and VNTR genotyping by PCR amplification. ,<br>1996, 10, 125-128.                                                                                                |     | 5         |
| 48 | HLAâ€B*0777 allele differs from B*0707 by a single residue in the antigen binding groove. Tissue Antigens,<br>2009, 74, 543-544.                                                                                       | 1.0 | 5         |
| 49 | Genomic fullâ€length analysis of the <i>B*08:79</i> allele suggests exon shuffling involving theÂ <i>B*08:01:01</i> and <i>B*07:06</i> alleles. Tissue Antigens, 2012, 80, 268-270.                                    | 1.0 | 5         |
| 50 | Sequencing of the novel <i><scp>HLA</scp>â€B*49:24</i> and <i><scp>HLAâ€ÐRB1</scp>*03:64</i> alleles.<br>Tissue Antigens, 2013, 81, 177-178.                                                                           | 1.0 | 5         |
| 51 | Differential effects of the calcium ionophore A23187 and the phorbol ester PMA on lymphocyte proliferation. Agents and Actions, 1992, 35, 238-244.                                                                     | 0.7 | 4         |
| 52 | A new <scp>HLAâ€DPB1</scp> allele, <i><scp>HLAâ€DPB1</scp>*142:01</i> , identified in a Peruvian organ<br>donor. Tissue Antigens, 2013, 82, 211-212.                                                                   | 1.0 | 4         |
| 53 | Three new HLA class II alleles: DRB1*08:70, DQA1*01:13 and DQA1*03:01:03. International Journal of Immunogenetics, 2016, 43, 107-108.                                                                                  | 1.8 | 4         |
| 54 | Somatic mutation in the HLAâ€B gene of a patient with acute myelogenous leukaemia. Hla, 2016, 88, 35-37.                                                                                                               | 0.6 | 4         |

| #  | Article                                                                                                                                                                                                                                                                          | IF       | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------|
| 55 | Characterization of three new <scp>HLA</scp> Class I Alleles in Spanish Caucasians,<br><scp>HLA</scp> â€A*02:620, <scp>HLA</scp> â€B*27:150 and <scp>HLA</scp> â€B*07:05:01:02. International<br>Journal of Immunogenetics, 2017, 44, 148-150.                                   | 1.8      | 4         |
| 56 | <i>HLAâ€B*56:55:01:02</i> , <i> *03:374</i> and <i>â€DPB1*13:01:03</i> characterized by nextâ€generation sequencing. Hla, 2018, 92, 419-420.                                                                                                                                     | 0.6      | 4         |
| 57 | The new HLA  allele C*07:170 shows a new polymorphism at amino acid position 147. Tissue Antigens, 2011, 78, 72-73.                                                                                                                                                              | 1.0      | 3         |
| 58 | Sequencing of a single HLAâ€B genotype including two rare alleles allows the detection of a new allele, <i>B*44:130</i> . Tissue Antigens, 2011, 78, 398-399.                                                                                                                    | 1.0      | 3         |
| 59 | Sequencing of a novel <scp>HLA</scp> â€B allele, <i>B*51:153</i> , in a Spanish individual. Tissue Antigens, 2013, 82, 297-297.                                                                                                                                                  | 1.0      | 3         |
| 60 | A novel null HLAâ€B allele, <i>B*15:375N</i> , due to a seven base pair deletion within exon 3. Hla, 2016, 87, 104-106.                                                                                                                                                          | 0.6      | 3         |
| 61 | Report From the First and Second Spanish Killer Immunoglobulin-Like Receptor Genotyping<br>Workshops: External Quality Control for Natural Killer Alloreactive Donor Selection in<br>Haploidentical Stem Cell Transplantation. Transplantation Proceedings, 2016, 48, 3043-3045. | 0.6      | 3         |
| 62 | Exon 2 sequencing of the new <scp>HLA</scp> â€ <scp>DRB</scp> 1 allele, <scp>DRB</scp> 1*13:216.<br>International Journal of Immunogenetics, 2017, 44, 38-39.                                                                                                                    | 1.8      | 3         |
| 63 | Genomic sequences of <scp>HLA</scp> â€A*68:169, <scp>HLA</scp> â€B*07:298 and <scp>HLA</scp> â€B*39:12<br>International Journal of Immunogenetics, 2018, 45, 140-142.                                                                                                            | 9<br>1.8 | 3         |
| 64 | The new HLA *05:199 was generated by intralocus recombination involving C*05:01:01:01 and C*16:01:01:01 alleles. Hla, 2019, 93, 128-130.                                                                                                                                         | 0.6      | 3         |
| 65 | Novel HLAâ€ÐPB1 alleles in Spanish individuals: <i>DPB1*02:01:57</i> , <i>DPB1*17:01:04</i> , <i>DPB1*1117:01</i> and <i>DPB1*1124:01</i> . Hla, 2020, 96, 757-758.                                                                                                              | 0.6      | 3         |
| 66 | A new <scp><i>HLAâ€B*39</i></scp> allele, <scp><i>B*39:168</i></scp> , closely related to<br><scp><i>B*39:05:01:02</i></scp> . Hla, 2021, 97, 75-76.                                                                                                                             | 0.6      | 3         |
| 67 | Sequencing of the new HLA class I alleles, <i>HLAâ€A*68:02:01:14</i> , â€ <i>B*35:510</i> , and â€ <i>C*07:907</i> Hla, 2021, 97, 543-544.                                                                                                                                       | 0.6      | 3         |
| 68 | Report of 13 new HLA alleles found in Spanish individuals. Hla, 2021, 98, 467-469.                                                                                                                                                                                               | 0.6      | 3         |
| 69 | A New Method for Phenotyping Red Blood Cells Using Microplates. Vox Sanguinis, 1999, 77, 143-148.                                                                                                                                                                                | 1.5      | 3         |
| 70 | Effects of lipoxygenase and cycloxygenase inhibitors on murine antibody-dependent cellular cytotoxicity (ADCC). Research in Experimental Medicine, 1992, 192, 423-430.                                                                                                           | 0.7      | 2         |
| 71 | CYTOKINES AND PLATELET ACTIVATION IN STORED POOLED BUFFY OATâ€DERIVED PLATELET CONCENTRATES<br>THE ISSUE OF TRANSFUSIONAL REACTIONS. British Journal of Haematology, 1996, 95, 755-756.                                                                                          | 2.5      | 2         |
|    |                                                                                                                                                                                                                                                                                  |          |           |

Informe del Taller Ibérico de Histocompatibilidad 2013. Componente de análisis de situación de procedimiento de pruebas cruzadas en guardias de trasplante de órganos. Inmunologia (Barcelona,) Tj ETQq0 0 0 œBT /Ovedock 10 Tf

**DOLORES PLANELLES** 

| #  | Article                                                                                                                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Somatic mutation in the two HLAâ€B genes of a patient with acute myelogenous leukemia. Hla, 2019, 94, 360-364.                                                                                                      | 0.6 | 2         |
| 74 | ldentification of three new HLA alleles in the Spanish population: <i>HLAâ€C*05:203</i> , <i>C*15:10:04</i> and <i>DRB1*01:99</i> . Hla, 2019, 93, 234-235.                                                         | 0.6 | 2         |
| 75 | Allogeneic hematopoietic stem cell transplant recipients in Spain: Human leukocyte antigen<br>characteristics and diversity by highâ€resolution analysis. Hla, 2021, 97, 198-213.                                   | 0.6 | 2         |
| 76 | Infusion of Haploidentical Stem Cell after Consolidation in Younger Patients with Acute Myeloid<br>Leukemia: Preliminary Results of a Phase I-II Study. Blood, 2016, 128, 1614-1614.                                | 1.4 | 2         |
| 77 | HCV NAT (minipool RT-PCR) and HCV core antigen ELISA. Transfusion, 2003, 43, 118-118.                                                                                                                               | 1.6 | 1         |
| 78 | Comparison between two cord blood collection strategies. Acta Obstetricia Et Gynecologica<br>Scandinavica, 2003, 82, 439-442.                                                                                       | 2.8 | 1         |
| 79 | Effects of nordihydroguaiaretic acid on murine antibody-dependent cellular cytotoxicity.<br>International Journal of Clinical and Laboratory Research, 1996, 26, 185-191.                                           | 1.0 | 0         |
| 80 | Unrelated-donor cord blood transplantation in patients with chronic myeloid leukemia. Biology of<br>Blood and Marrow Transplantation, 2004, 10, 734.                                                                | 2.0 | 0         |
| 81 | 12: Early hematopoietic chimerism predicts engraftment after umbilical cord blood stem cell transplantation. Biology of Blood and Marrow Transplantation, 2007, 13, 6-7.                                            | 2.0 | 0         |
| 82 | 1: Analysis of Risk Factors in Adults Transplanted with UCB for Treatment of Hematologic Malignancy.<br>Biology of Blood and Marrow Transplantation, 2007, 13, 1393.                                                | 2.0 | 0         |
| 83 | The effect of in vitro $\hat{I}^3$ -irradiation on mitogenic responsiveness of murine lymphocytes. Journal of Physiology and Biochemistry, 2008, 64, 179-187.                                                       | 3.0 | 0         |
| 84 | HLA-DQ: Celiac Disease Versus Inflammatory Bowel Disease. Gastroenterology, 2017, 152, S977-S978.                                                                                                                   | 1.3 | 0         |
| 85 | Algorithm to Study HLA-Antibodies and Selecting Criteria for the Best Haploidentical Donor. Indian<br>Journal of Hematology and Blood Transfusion, 2020, 36, 573-574.                                               | 0.6 | 0         |
| 86 | Prophylaxis of Cytomegalovirus (CMV) Infection and Disease after Unrelated-Donor Umbilical<br>Cord-Blood Transplantation (UCBT) with Intravenous Ganciclovir or Oral Valganciclovir Blood,<br>2005, 106, 5460-5460. | 1.4 | 0         |
| 87 | Long-Term Outcome and Prognostic Factors after Single-Unit Umbilical Cord-Blood Transplantation<br>(UCBT) for Adults with Hematologic Malignancies Blood, 2006, 108, 3129-3129.                                     | 1.4 | 0         |
| 88 | Synergism between phorbol myristate acetate and calcium ionophore in inducing proliferation of in vitro 1 <sup>3</sup> -irradiated murine lymphocytes. General Physiology and Biophysics, 2015, 34, 441-7.          | 0.9 | 0         |