
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6857020/publications.pdf Version: 2024-02-01

Ινίνα ΝΙ αναικ

#	Article	IF	CITATIONS
1	Impact of human CD95 mutations on cell death and autoimmunity: a model. Trends in Immunology, 2022, 43, 22-40.	6.8	6
2	Regulation of extrinsic apoptotic signaling by c-FLIP: towards targeting cancer networks. Trends in Cancer, 2022, 8, 190-209.	7.4	32
3	Editorial: Dynamical Networks of Life/Death Decisions in a Cell: From DNA Repair to Cell Death. Frontiers in Cell and Developmental Biology, 2021, 9, 722426.	3.7	0
4	Measuring Composition of CD95 Death-Inducing Signaling Complex and Processing of Procaspase-8 in this Complex. Journal of Visualized Experiments, 2021, , .	0.3	1
5	Long and short isoforms of c-FLIP act as control checkpoints of DED filament assembly. Oncogene, 2020, 39, 1756-1772.	5.9	22
6	The role of death domain proteins in host response upon SARS-CoV-2 infection: modulation of programmed cell death and translational applications. Cell Death Discovery, 2020, 6, 101.	4.7	41
7	Pharmacological targeting of c-FLIPL and Bcl-2 family members promotes apoptosis in CD95L-resistant cells. Scientific Reports, 2020, 10, 20823.	3.3	4
8	YB-1 Mediates TNF-Induced Pro-Survival Signaling by Regulating NF-κB Activation. Cancers, 2020, 12, 2188.	3.7	10
9	The Recombinant Fragment of Human κ-Casein Induces Cell Death by Targeting the Proteins of Mitochondrial Import in Breast Cancer Cells. Cancers, 2020, 12, 1427.	3.7	9
10	Dissecting DISC regulation via pharmacological targeting of caspase-8/c-FLIPL heterodimer. Cell Death and Differentiation, 2020, 27, 2117-2130.	11.2	19
11	Controlling Cell Death through Post-translational Modifications of DED Proteins. Trends in Cell Biology, 2020, 30, 354-369.	7.9	35
12	Interplay Between Mitophagy and Apoptosis Defines a Cell Fate Upon Co-treatment of Breast Cancer Cells With a Recombinant Fragment of Human κ-Casein and Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand. Frontiers in Cell and Developmental Biology, 2020, 8, 617762.	3.7	5
13	The purification and identification of human blood serum proteins with affinity to the antitumor active RL2 lactaptin using magnetic microparticles. Biomedical Chromatography, 2019, 33, e4647.	1.7	3
14	Cytotoxic and Antitumor Activity of Lactaptin in Combination with Autophagy Inducers and Inhibitors. BioMed Research International, 2019, 2019, 1-16.	1.9	9
15	Delineating the role of c-FLIP/NEMO interaction in the CD95 network via rational design of molecular probes. BMC Genomics, 2019, 20, 293.	2.8	9
16	Modulation of CD95-mediated signaling by post-translational modifications: towards understanding CD95 signaling networks. Apoptosis: an International Journal on Programmed Cell Death, 2019, 24, 385-394.	4.9	19
17	Decoding the sweet regulation of apoptosis: the role of glycosylation and galectins in apoptotic signaling pathways. Cell Death and Differentiation, 2019, 26, 981-993.	11.2	48
18	Targeting RIPK1 in AML cells carrying FLT3â€ITD. International Journal of Cancer, 2019, 145, 1558-1569.	5.1	10

#	Article	IF	CITATIONS
19	Prioritization of genes involved in endothelial cell apoptosis by their implication in lymphedema using an analysis of associative gene networks with ANDSystem. BMC Medical Genomics, 2019, 12, 47.	1.5	18
20	Quantitative single cell analysis uncovers the life/death decision in CD95 network. PLoS Computational Biology, 2018, 14, e1006368.	3.2	20
21	Alterations in the nucleocytoplasmic transport in apoptosis: Caspases lead the way. Cell Proliferation, 2018, 51, e12467.	5.3	49
22	Caspase-2 is a negative regulator of necroptosis. International Journal of Biochemistry and Cell Biology, 2018, 102, 101-108.	2.8	27
23	Novel candidate genes important for asthma and hypertension comorbidity revealed from associative gene networks. BMC Medical Genomics, 2018, 11, 15.	1.5	57
24	Modulation of Mcl-1 transcription by serum deprivation sensitizes cancer cells to cisplatin. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 557-566.	2.4	10
25	Apoptosis regulation by subcellular relocation of caspases. Scientific Reports, 2018, 8, 12199.	3.3	56
26	A guide to automated apoptosis detection: How to make sense of imaging flow cytometry data. PLoS ONE, 2018, 13, e0197208.	2.5	19
27	A study of structural properties of gene network graphs for mathematical modeling of integrated mosaic gene networks. Journal of Bioinformatics and Computational Biology, 2017, 15, 1650045.	0.8	2
28	Post-translational Modification of Caspases: The Other Side of Apoptosis Regulation. Trends in Cell Biology, 2017, 27, 322-339.	7.9	104
29	Pathogen-induced ubiquitin-editing enzyme A20 bifunctionally shuts off NF-κB and caspase-8-dependent apoptotic cell death. Cell Death and Differentiation, 2017, 24, 1621-1631.	11.2	37
30	A Dual Role of Caspase-8 in Triggering and Sensing Proliferation-Associated DNA Damage, a Key Determinant of Liver Cancer Development. Cancer Cell, 2017, 32, 342-359.e10.	16.8	122
31	Measuring Procaspase-8 and -10 Processing upon Apoptosis Induction. Bio-protocol, 2017, 7, e2081.	0.4	0
32	A20 Curtails Primary but Augments Secondary CD8+ T Cell Responses in Intracellular Bacterial Infection. Scientific Reports, 2016, 6, 39796.	3.3	20
33	Mosaic gene network modelling identified new regulatory mechanisms in HCV infection. Virus Research, 2016, 218, 71-78.	2.2	8
34	NACE: A web-based tool for prediction of intercompartmental efficiency of human molecular genetic networks. Virus Research, 2016, 218, 79-85.	2.2	4
35	Chronic Toxoplasma gondii infection enhances β-amyloid phagocytosis and clearance by recruited monocytes. Acta Neuropathologica Communications, 2016, 4, 25.	5.2	78
36	Parameter identification using stochastic simulations reveals a robustness in CD95 apoptotic response. Molecular BioSystems, 2016, 12, 1486-1495.	2.9	0

#	Article	IF	CITATIONS
37	Prediction of tissue-specific effects of gene knockout on apoptosis in different anatomical structures of human brain. BMC Genomics, 2015, 16, S3.	2.8	8
38	Morphological and Functional Alterations of Alveolar Macrophages in a Murine Model of Chronic Inflammatory Lung Disease. Lung, 2015, 193, 947-953.	3.3	8
39	Quantification of apoptosis and necroptosis at the single cell level by a combination of Imaging Flow Cytometry with classical Annexin V/propidium iodide staining. Journal of Immunological Methods, 2015, 423, 99-103.	1.4	167
40	Quantification of CD95-induced apoptosis and NF-κB activation at the single cell level. Journal of Immunological Methods, 2015, 423, 12-17.	1.4	14
41	Combinatorial treatment of CD95L and gemcitabine in pancreatic cancer cells induces apoptotic and RIP1-mediated necroptotic cell death network. Experimental Cell Research, 2015, 339, 1-9.	2.6	18
42	Role of the nucleus in apoptosis: signaling and execution. Cellular and Molecular Life Sciences, 2015, 72, 4593-4612.	5.4	84
43	Cell death controlling complexes and their potential therapeutic role. Cellular and Molecular Life Sciences, 2015, 72, 505-517.	5.4	35
44	Phagocytosis of Abeta by infiltrating myeloid cells in a mouse model of Alzheimer's disease. Journal of Neuroimmunology, 2014, 275, 120.	2.3	0
45	Analysis of signaling networks distributed over intracellular compartments based on protein-protein interactions. BMC Genomics, 2014, 15, S7.	2.8	6
46	Mathematical modeling of apoptosis. Cell Communication and Signaling, 2013, 11, 44.	6.5	39
47	The chains of death. Cell Cycle, 2013, 12, 193-194.	2.6	31
48	Quantification of High-Molecular Weight Protein Platforms by AQUA Mass Spectrometry as Exemplified for the CD95 Death-Inducing Signaling Complex (DISC). Cells, 2013, 2, 476-495.	4.1	8
49	The E. coli Effector Protein NleF Is a Caspase Inhibitor. PLoS ONE, 2013, 8, e58937.	2.5	83
50	Systematic Complexity Reduction of Signaling Models and Application to a CD95 Signaling Model for Apoptosis. , 2012, , 57-84.		0
51	Modeling Single Cells in Systems Biology. , 2012, , 145-161.		0
52	Systems Biology of Death Receptor-Induced Apoptosis. , 2012, , 33-56.		3
53	Stoichiometry of the CD95 Death-Inducing Signaling Complex: Experimental and Modeling Evidence for a Death Effector Domain Chain Model. Molecular Cell, 2012, 47, 306-319.	9.7	173
54	Cellular FLICE-like inhibitory proteins (c-FLIPs): Fine-tuners of life and death decisions. Experimental Cell Research, 2012, 318, 1324-1331.	2.6	101

#	Article	IF	CITATIONS
55	Understanding Life and Death at CD95. Advances in Experimental Medicine and Biology, 2011, 691, 151-161.	1.6	3
56	Modulation of the CD95-Induced Apoptosis: The Role of CD95 N-Glycosylation. PLoS ONE, 2011, 6, e19927.	2.5	54
57	Systems biology of apoptosis signaling networks. Current Opinion in Biotechnology, 2010, 21, 551-555.	6.6	95
58	Cdk1/Cyclin B1 Controls Fas-Mediated Apoptosis by Regulating Caspase-8 Activity. Molecular and Cellular Biology, 2010, 30, 5726-5740.	2.3	80
59	Model-based dissection of CD95 signaling dynamics reveals both a pro- and antiapoptotic role of c-FLIPL. Journal of Cell Biology, 2010, 190, 377-389.	5.2	135
60	Dynamics within the CD95 deathâ€inducing signaling complex decide life and death of cells. Molecular Systems Biology, 2010, 6, 352.	7.2	130
61	A New C-Terminal Cleavage Product of Procaspase-8, p30, Defines an Alternative Pathway of Procaspase-8 Activation. Molecular and Cellular Biology, 2009, 29, 4431-4440.	2.3	50
62	Understanding apoptosis by systems biology approaches. Molecular BioSystems, 2009, 5, 1105.	2.9	45
63	Life and Death Decisions in the CD95 System: Main Pro-and Anti-Apoptotic Modulators. Acta Naturae, 2009, 1, 80-3.	1.7	1
64	Human tankyrases are aberrantly expressed in colon tumors and contain multiple epitopes that induce humoral and cellular immune responses in cancer patients. Cancer Immunology, Immunotherapy, 2008, 57, 871-881.	4.2	23
65	CD95 Stimulation Results in the Formation of a Novel Death Effector Domain Protein-containing Complex. Journal of Biological Chemistry, 2008, 283, 26401-26408.	3.4	44
66	Analysis of CD95 Threshold Signaling. Journal of Biological Chemistry, 2007, 282, 13664-13671.	3.4	97
67	The traditional Chinese herbal compound rocaglamide preferentially induces apoptosis in leukemia cells by modulation of mitogen-activated protein kinase activities. International Journal of Cancer, 2007, 121, 1839-1846.	5.1	89
68	Life and death in peripheral T cells. Nature Reviews Immunology, 2007, 7, 532-542.	22.7	536
69	Caspase-2 is activated at the CD95 death-inducing signaling complex in the course of CD95-induced apoptosis. Blood, 2006, 108, 559-565.	1.4	58
70	The c-FLIP–NH2 terminus (p22-FLIP) induces NF-κB activation. Journal of Experimental Medicine, 2006, 203, 1295-1305.	8.5	185
71	Caspases: pharmacological manipulation of cell death. Journal of Clinical Investigation, 2005, 115, 2665-2672.	8.2	517
72	c-FLIPR, a New Regulator of Death Receptor-induced Apoptosis. Journal of Biological Chemistry, 2005, 280, 14507-14513.	3.4	236

#	Article	IF	CITATIONS
73	Death receptor signaling. Journal of Cell Science, 2005, 118, 265-267.	2.0	425
74	Translational Properties of mHNA, a Messenger RNA Containing Anhydrohexitol Nucleotidesâ€. Biochemistry, 2001, 40, 11777-11784.	2.5	13
75	Structure and function of 5S rRNA in the ribosome. Biochemistry and Cell Biology, 1995, 73, 869-876.	2.0	52
76	Contacts between 16S ribosomal RNA and mRNA, within the spacer region separating the AUG initiator codon and the Shine -Dalgarno sequence; a site-directed cross-linking study. Nucleic Acids Research, 1994, 22, 3018-3025.	14.5	67
77	Modern Site-Directed Cross-Linking Approaches: Implication for Ribosome Structure and Functions. , 0, , 245-255.		2
78	CD95. The AFCS-nature Molecule Pages, 0, , .	0.2	0