Gabriel C Prodan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6856750/publications.pdf

Version: 2024-02-01

79 papers 1,072 citations

471509 17 h-index 30 g-index

79 all docs

79 docs citations

79 times ranked 1400 citing authors

#	Article	IF	Citations
1	Characterization of Platinum-Based Thin Films Deposited by Thermionic Vacuum Arc (TVA) Method. Materials, 2020, 13, 1796.	2.9	4
2	New Composite Nanomaterials with Antimicrobial and Photocatalytic Properties Based on Silver and Zinc Oxide. Journal of Inorganic and Organometallic Polymers and Materials, 2019, 29, 2072-2082.	3.7	15
3	Pulsed Laser Fabrication of TiO2 Buffer Layers for Dye Sensitized Solar Cells. Nanomaterials, 2019, 9, 746.	4.1	10
4	Zn/F-doped tin oxide nanoparticles synthesized by laser pyrolysis: structural and optical properties. Beilstein Journal of Nanotechnology, 2019, 10, 9-21.	2.8	10
5	A study on thermal degradation of zinc oxide nanopowders functionalized with anthocyanins, in correlation with their properties and applications. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	2.3	5
6	The Properties of Binary and Ternary Ti Based Coatings Produced by Thermionic Vacuum Arc (TVA) Technology. Coatings, 2018, 8, 114.	2.6	11
7	The influence of Triton X-100 surfactant on the morphology and properties of zinc sulfide nanoparticles for applications in azo dyes degradation. Materials Chemistry and Physics, 2017, 193, 316-328.	4.0	10
8	Considerations about the Dependence of PEGylated ZnS Nanoparticles Properties on the Synthesis Method. Zeitschrift Fur Physikalische Chemie, 2017, 232, 61-77.	2.8	20
9	Laser pyrolysis synthesis of Sn–Fe–N@polycarbosilazane nanocomposites, characterization and evaluation as energy storage materials. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	2.3	1
10	Correlation study of nanocrystalline carbon doped thin films prepared by a thermionic vacuum arc deposition technique. Journal Physics D: Applied Physics, 2017, 50, 435305.	2.8	5
11	Influence of Synthesis Route on the Structure and Properties of Zinc Oxide Nanoparticles Functionalized with Anthocyanins from Raw Vegetable Extracts. ECS Journal of Solid State Science and Technology, 2017, 6, P870-P878.	1.8	6
12	Characterization of nitrogen doped silicon-carbon multi-layer nanostructures obtained by TVA method. Proceedings of SPIE, 2016, , .	0.8	1
13	Facile synthesis, characterization and application of functionalized cadmium sulfide nanopowders. Materials Chemistry and Physics, 2016, 173, 70-77.	4.0	17
14	Dependence of ZnO-based dye-sensitized solar cell characteristics on the layer deposition method. Bulletin of Materials Science, 2015, 38, 65-72.	1.7	5
15	Magnesium plasma diagnostics by heated probe and characterization of the Mg thin films deposited by thermionic vacuum arc technology. Plasma Sources Science and Technology, 2015, 24, 035008.	3.1	12
16	Structural and electrical properties of N doped SiC nanostructures obtained by TVA method., 2015,,.		2
17	Properties of PEG-capped CdS nanopowders synthesized under very mild conditions. Powder Technology, 2015, 270, 197-204.	4.2	24
18	The effect of the substrate temperature and the acceleration potential drop on the structural and physical properties of SiC thin films deposed by TVA method., 2014,,.		2

#	Article	IF	CITATIONS
19	Silicon carbide multilayer protective coating on carbon obtained by thermionic vacuum arc method. Journal of Nanophotonics, 2014, 8, 083996.	1.0	6
20	Binary C-Ag Plasma Breakdown and Structural Characterization of the Deposited Thin Films by Thermionic Vacuum Arc Method. IEEE Transactions on Plasma Science, 2014, 42, 2806-2807.	1.3	8
21	Silica nanowires obtained on clay mineral layers and their influence on mini-emulsion polymerisation. Applied Clay Science, 2014, 95, 232-242.	5.2	3
22	Influence of In doping on electro-optical properties of ZnO films. Bulletin of Materials Science, 2013, 36, 231-237.	1.7	25
23	Investigations on the influence of surfactant in morphology and optical properties of zinc oxide nanopowders for dye-sensitized solar cells applications. Materials Science in Semiconductor Processing, 2013, 16, 1095-1104.	4.0	14
24	Development of TiO2 and TiO2/Fe-based polymeric nanocomposites by single-step laser pyrolysis. Applied Surface Science, 2013, 278, 305-312.	6.1	6
25	SiC multi-layer protective coating on carbon obtained by thermionic vacuum arc method. Proceedings of SPIE, 2013, , .	0.8	1
26	Application of carbon-aluminum nanostructures in divertor coatings from fusion reactor., 2012,,.		1
27	Sol–gel preparation and structural characterization of Ba2TiSi2O8 powder. Journal of Sol-Gel Science and Technology, 2012, 63, 457-462.	2.4	6
28	Fe-inserted and shell-shaped carbon nanoparticles by cluster-mediated laser pyrolysis. Applied Surface Science, 2012, 258, 9394-9398.	6.1	9
29	Laser synthesis of magnetic iron–carbon nanocomposites with size dependent properties. Advanced Powder Technology, 2012, 23, 88-96.	4.1	16
30	Investigation of the SiC thin films synthetized by Thermionic Vacuum Arc method (TVA). European Physical Journal D, 2012, 66, 1.	1.3	27
31	Copolymerization in dispersion of divinyl benzene–maleic anhydride in the presence of silylated montmorillonite clays. Polymer Bulletin, 2012, 68, 993-1007.	3.3	5
32	Electron microscopy characterization of some carbon based nanostructures with application in divertors coatings from fusion reactor. , 2011, , .		1
33	Synthesis and Characterization of Some Carbon Based Nanostructures. Contributions To Plasma Physics, 2011, 51, 546-553.	1.1	2
34	Biocompatibility and bioactivity enhancement of Ce stabilized ZrO ₂ doped HA coatings by controlled porosity change of Al ₂ O ₃ substrates. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2011, 96B, 218-224.	3.4	12
35	Recent developments in the formation and structure of tin–iron oxides by laser pyrolysis. Applied Surface Science, 2011, 257, 5460-5464.	6.1	12
36	Synthesis and characterization of some carbon based nanostructures. , 2010, , .		1

#	Article	IF	CITATIONS
37	Direct Production of a Novel Iron-Based Nanocomposite from the Laser Pyrolysis of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mm< td=""><td>m₂.៧:mtex</td><td>tæmml:msi</td></mm<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math>	m ₂.៧: mtex	tæmml:msi
38	Iron Oxide-Based Nanoparticles with Different Mean Sizes Obtained by the Laser Pyrolysis: Structural and Magnetic Properties. Journal of Nanoscience and Nanotechnology, 2010, 10, 1223-1234.	0.9	28
39	Heterogeneous atoms in laser-induced synthesis of carbon black. Applied Surface Science, 2009, 255, 5511-5514.	6.1	3
40	Carbon nanotubes grown by catalytic CO2 laser-induced chemical vapor deposition on core-shell Fe/C composite nanoparticles. Infrared Physics and Technology, 2008, 51, 186-197.	2.9	15
41	ZnO nanoparticles obtained by hydrothermal method at low temperature. Proceedings of SPIE, 2008, , .	0.8	2
42	HRTEM Study of nano-TiO2 Powder. Revista De Chimie (discontinued), 2008, 59, .	0.4	0
43	Electron microscopy characterization of iron oxide nanopowders (prepared by laser pyrolysis) for magnetic fluid applications., 2007,,.		0
44	<title>Structural and magnetic properties of nanosized iron-polyoxocarbosilane core-shell composites prepared by laser pyrolysis</title> ., 2007,,.		0
45	<title>Functionalized Si/SiO<formula><inf><roman>2</roman></inf></formula> quantum dots</title> ., 2007, , .		1
46	Evaluation of Mean Diameter values using Scherrer Equation Applied to Electron Diffraction Images. , 2007, , 231-237.		16
47	Structural and optical characterization of undoped, doped, and clustered ZnO thin films obtained by PLD for gas sensing applications. Applied Surface Science, 2007, 253, 6499-6503.	6.1	10
48	Iron/iron oxides core–shell nanoparticles by laser pyrolysis: Structural characterization and enhanced particle dispersion. Applied Surface Science, 2007, 254, 1048-1052.	6.1	30
49	Hybrid polymer composites reinforced by layered silicate and laser synthesized nanocarbons. Applied Surface Science, 2007, 254, 1032-1036.	6.1	3
50	Titanium dioxide nanoparticles prepared by laser pyrolysis: Synthesis and photocatalytic properties. Applied Surface Science, 2007, 254, 1037-1041.	6.1	33
51	Laser-synthesized carbon nanopowders for nanoscale reinforced hybrid composites. Materials Science and Engineering C, 2007, 27, 1010-1014.	7.3	7
52	Carbon nanotubes growth from C2H2 and C2H4/NH3 by catalytic LCVD on supported iron–carbon nanocomposites. Physica E: Low-Dimensional Systems and Nanostructures, 2007, 37, 26-33.	2.7	5
53	The synthesis of multi-walled carbon nanotubes (MWNTs) by catalytic pyrolysis of the phenol-formaldehyde resins. Physica E: Low-Dimensional Systems and Nanostructures, 2007, 37, 44-48.	2.7	107
54	Sol–gel preparation and characterization of perovskite lanthanum lithium titanate. Journal of Materials Science, 2007, 42, 3373-3377.	3.7	21

#	Article	IF	Citations
55	Structural and sensing properties of a novel Fe/Fe2O3/polyoxocarbosilane core shell nanocomposite powder prepared by laser pyrolysis. Journal of Materials Science, 2007, 42, 1838-1846.	3.7	12
56	Effects of some synthesis parameters on the structure of titania nanoparticles obtained by laser pyrolysis. Applied Surface Science, 2007, 253, 7908-7911.	6.1	15
57	Structural investigations on TiO2 and Fe-doped TiO2 nanoparticles synthesized by laser pyrolysis. Thin Solid Films, 2007, 515, 8438-8445.	1.8	46
58	Microstructural characterization and optical properties of ZnSe thin films. Journal of Non-Crystalline Solids, 2006, 352, 1525-1528.	3.1	29
59	Study of Si/SiO 2 nanoparticles produced by laser ablation. , 2006, , .		0
60	Growth of oxide thin films for optical gas sensor applications. Applied Surface Science, 2006, 252, 4582-4586.	6.1	15
61	Iron/iron carbides/carbon core-shell nanostructures synthesized by laser pyrolysis., 2005, 5924, 288.		1
62	Complex rare-earth-substituted lead titanate piezoceramics: II., 2005, 5650, 446.		0
63	Combining resonant/non-resonant processes: Nanometer-scale iron-based material preparation via CO2 laser pyrolysis. Applied Surface Science, 2005, 248, 138-146.	6.1	40
64	The effect of substrate temperature on the optical properties of polycrystalline Sb2O3 thin films. Journal of Crystal Growth, 2005, 277, 529-535.	1.5	63
65	Iron–iron oxide core–shell nanoparticles synthesized by laser pyrolysis followed by superficial oxidation. Applied Surface Science, 2005, 247, 25-31.	6.1	65
66	Infrared laser synthesis and properties of magnetic nano-iron-polyoxocarbosilane composites. Applied Organometallic Chemistry, 2005, 19, 1015-1021.	3 . 5	14
67	PZT-type materials with improved radial piezoelectric properties. Journal of the European Ceramic Society, 2005, 25, 2401-2404.	5.7	3
68	Synthesis of cadmium complex sulfides nanoparticles by thermal decomposition. Journal of Thermal Analysis and Calorimetry, 2005, 81, 399-405.	3.6	9
69	Properties, stability and aging in (Pb,Sr)TiO3-PbZrO3-Pb(Mg1/3Sb2/3)O3ferroelectric ceramics. European Physical Journal Special Topics, 2005, 128, 105-110.	0.2	1
70	Microstructural Investigation of Complex Doped PT-Type Ceramics. Ferroelectrics, 2005, 319, 3-10.	0.6	0
71	Diamond-like nanostructured carbon film deposition using thermionic vacuum arc. Diamond and Related Materials, 2004, 13, 1398-1401.	3.9	33
72	Transmission Electron Microscopy Study on the Formation of Al18B4O33 Whiskers. Mikrochimica Acta, 2004, 147, 147.	5.0	2

#	Article	lF	CITATIONS
73	High-Resolution Transmission Electron Microscopy Study of LiNixCo1?xO2 Synthesized by Unconventional Methods. Mikrochimica Acta, 2004, 147, 151.	5.0	5
74	Structural characterization of polycrystalline Sb2O3 thin films prepared by thermal vacuum evaporation technique. Journal of Crystal Growth, 2004, 269, 392-400.	1.5	43
75	Nearly monodispersed carbon coated iron nanoparticles for the catalytic growth of nanotubes/nanofibres. Diamond and Related Materials, 2004, 13, 362-370.	3.9	67
76	<title>TEM study of CaTiO<formula><inf><roman>3</roman></inf></formula> synthesized by sol-gel method</title> ., 2004,,.		1
77	Carbon-encapsulated iron nanoparticles prepared by laser pyrolysis: characterization and catalyzers for carbon nanotubes and nanofibers., 2004,,.		2
78	Iron-carbon nanocomposite obtained by laser-induced gas-phase reactions. , 2003, , .		2
79	Growth and Characterization of the High Purity C-Mg Thin Films Obtained by Thermionic Vacuum Arc (TVA) Technology. Advanced Materials Research, 0, 816-817, 106-110.	0.3	0