Jean-Francois Thibodeau

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6856139/publications.pdf

Version: 2024-02-01

23 papers 625 citations

758635 12 h-index 752256 20 g-index

23 all docs

23 docs citations

times ranked

23

1060 citing authors

#	Article	IF	CITATIONS
1	Urinary Podocyte Microparticles Identify Prealbuminuric Diabetic Glomerular Injury. Journal of the American Society of Nephrology: JASN, 2014, 25, 1401-1407.	3.0	117
2	Nephropathy and Elevated BP in Mice with Podocyte-Specific NADPH Oxidase 5 Expression. Journal of the American Society of Nephrology: JASN, 2014, 25, 784-797.	3.0	109
3	A Newly Discovered Antifibrotic Pathway Regulated by Two Fatty Acid Receptors. American Journal of Pathology, 2018, 188, 1132-1148.	1.9	102
4	Vascular contributions to 16p11.2 deletion autism syndrome modeled in mice. Nature Neuroscience, 2020, 23, 1090-1101.	7.1	70
5	A Novel Mouse Model of Advanced Diabetic Kidney Disease. PLoS ONE, 2014, 9, e113459.	1.1	31
6	Mechanical stretch and prostaglandin E2 modulate critical signaling pathways in mouse podocytes. Cellular Signalling, 2010, 22, 1222-1230.	1.7	27
7	NADPH oxidase 5 and renal disease. Current Opinion in Nephrology and Hypertension, 2015, 24, 81-87.	1.0	23
8	PGE2 EP1 receptor inhibits vasopressin-dependent water reabsorption and sodium transport in mouse collecting duct. Laboratory Investigation, 2018, 98, 360-370.	1.7	22
9	Podocyte NADPH Oxidase 5 Promotes Renal Inflammation Regulated by the Toll-Like Receptor Pathway. Antioxidants and Redox Signaling, 2019, 30, 1817-1830.	2.5	21
10	PTGER1 Deletion Attenuates Renal Injury in Diabetic Mouse Models. American Journal of Pathology, 2013, 183, 1789-1802.	1.9	18
11	Fatty acid mimetic PBI-4547 restores metabolic homeostasis via GPR84 in mice with non-alcoholic fatty liver disease. Scientific Reports, 2020, 10, 12778.	1.6	17
12	Prostaglandin E2 increases proximal tubule fluid reabsorption, and modulates cultured proximal tubule cell responses via EP1 and EP4 receptors. Laboratory Investigation, 2015, 95, 1044-1055.	1.7	15
13	Vascular Smooth Muscle-Specific EP4 Receptor Deletion in Mice Exacerbates Angiotensin II-Induced Renal Injury. Antioxidants and Redox Signaling, 2016, 25, 642-656.	2.5	12
14	Prostaglandin E2 receptor EP1 (PGE2/EP1) deletion promotes glomerular podocyte and endothelial cell injury in hypertensive TTRhRen mice. Laboratory Investigation, 2020, 100, 414-425.	1.7	11
15	GRK2 knockdown in mice exacerbates kidney injury and alters renal mechanisms of blood pressure regulation. Scientific Reports, 2018, 8, 11415.	1.6	10
16	PBI-4050 via GPR40 activation improves adenine-induced kidney injury in mice. Clinical Science, 2019, 133, 1587-1602.	1.8	8
17	Comparative analysis of hypertensive nephrosclerosis in animal models of hypertension and its relevance to human pathology. Glomerulopathy. PLoS ONE, 2022, 17, e0264136.	1.1	7
18	Hyperfiltration in ubiquitin C-terminal hydrolase L1-deleted mice. Clinical Science, 2018, 132, 1453-1470.	1.8	3

#	Article	IF	CITATIONS
19	FO008FATTY ACID RECEPTORS GPR40/GPR84: TWO PROMISING TARGETS IN KIDNEY FIBROSIS. Nephrology Dialysis Transplantation, 2019, 34, .	0.4	1
20	SP345ACTIVATION OF THE FREE-FATTY ACID RECEPTOR GPR40 IMPROVES ANEMIA IN MOUSE MODELS OF KIDNEY DISEASE VIA A NOVEL EPO-INDEPENDENT MECHANISM OF ACTION. Nephrology Dialysis Transplantation, 2019, 34, .	0.4	1
21	FP266PBI-4050 REDUCES SYSTEMIC INFLAMMATION, ELECTROLYTE DISTURBANCES, AND RENAL INJURY IN MICE WITH SEPSIS-INDUCED ACUTE KIDNEY INJURY; ROLE OF GPR84. Nephrology Dialysis Transplantation, 2019, 34, .	0.4	O
22	FRI-097-PBI-4050 treatment decreases sepsis-induced liver injury in mice. Journal of Hepatology, 2019, 70, e430.	1.8	0
23	PBI-4050 restores liver and adipose tissue metabolic homeostasis, and decreases fibrosis in a high-fat-diet mouse model of non-alcoholic fatty liver disease. Journal of Hepatology, 2020, 73, S656-S657.	1.8	0