Hong Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6854629/publications.pdf

Version: 2024-02-01

		76326	56724
85	9,512	40	83
papers	citations	h-index	g-index
85	85	85	8237
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Electricity Generation Using an Air-Cathode Single Chamber Microbial Fuel Cell in the Presence and Absence of a Proton Exchange Membrane. Environmental Science & Environmental Science, 2004, 38, 4040-4046.	10.0	1,708
2	Increased performance of single-chamber microbial fuel cells using an improved cathode structure. Electrochemistry Communications, 2006, 8, 489-494.	4.7	978
3	Power Generation in Fed-Batch Microbial Fuel Cells as a Function of lonic Strength, Temperature, and Reactor Configuration. Environmental Science & Eamp; Technology, 2005, 39, 5488-5493.	10.0	830
4	Quantification of the Internal Resistance Distribution of Microbial Fuel Cells. Environmental Science & Environmental	10.0	536
5	Ag ₂ O/TiO ₂ Nanobelts Heterostructure with Enhanced Ultraviolet and Visible Photocatalytic Activity. ACS Applied Materials & Enhanced Ultraviolet and Visible Photocatalytic Activity. ACS Applied Materials & Enhanced Ultraviolet and Visible Photocatalytic Activity. ACS Applied Materials & Enhanced Ultraviolet and Visible Photocatalytic Activity. ACS Applied Materials & Enhanced Ultraviolet and Visible Photocatalytic Activity. ACS Applied Materials & Enhanced Ultraviolet and Visible Photocatalytic Activity. ACS Applied Materials & Enhanced Ultraviolet and Visible Photocatalytic Activity. ACS Applied Materials & Enhanced Ultraviolet and Visible Photocatalytic Activity.	8.0	489
6	Sustainable Power Generation in Microbial Fuel Cells Using Bicarbonate Buffer and Proton Transfer Mechanisms. Environmental Science & Environmental Sc	10.0	322
7	An overview of advanced methods for the characterization of oxygen vacancies in materials. TrAC - Trends in Analytical Chemistry, 2019, 116, 102-108.	11.4	315
8	Novel fluorinated Bi 2 MoO 6 nanocrystals for efficient photocatalytic removal of water organic pollutants under different light source illumination. Applied Catalysis B: Environmental, 2017, 209, 1-11.	20.2	260
9	Heterojunction Architecture of Nâ€Doped WO ₃ Nanobundles with Ce ₂ S ₃ Nanodots Hybridized on a Carbon Textile Enables a Highly Efficient Flexible Photocatalyst. Advanced Functional Materials, 2019, 29, 1903490.	14.9	223
10	Constructing Fe-MOF-Derived Z-Scheme Photocatalysts with Enhanced Charge Transport: Nanointerface and Carbon Sheath Synergistic Effect. ACS Applied Materials & Samp; Interfaces, 2020, 12, 25494-25502.	8.0	217
11	Design and fabrication of microsphere photocatalysts for environmental purification and energy conversion. Chemical Engineering Journal, 2016, 287, 117-129.	12.7	180
12	Preparation and characterization of a novel KOH activated graphite felt cathode for the electro-Fenton process. Applied Catalysis B: Environmental, 2015, 165, 360-368.	20.2	170
13	Cerium-based hybrid nanorods for synergetic photo-thermocatalytic degradation of organic pollutants. Journal of Materials Chemistry A, 2018, 6, 24740-24747.	10.3	164
14	Efficient Charges Separation Using Advanced BiOI-Based Hollow Spheres Decorated with Palladium and Manganese Dioxide Nanoparticles. ACS Sustainable Chemistry and Engineering, 2018, 6, 2751-2757.	6.7	157
15	A Novel Electro-Fenton Process for Water Treatment:Â Reaction-controlled pH Adjustment and Performance Assessment. Environmental Science & Environmental Science & 2007, 41, 2937-2942.	10.0	154
16	Nano-TiO2 enhances the toxicity of copper in natural water to Daphnia magna. Environmental Pollution, 2011, 159, 729-734.	7.5	151
17	Bi3TaO7/Ti3C2 heterojunctions for enhanced photocatalytic removal of water-borne contaminants. Environmental Research, 2020, 185, 109409.	7.5	151
18	Sustainable Energy Recovery in Wastewater Treatment by Microbial Fuel Cells: Stable Power Generation with Nitrogen-doped Graphene Cathode. Environmental Science & Environment	10.0	146

#	Article	IF	CITATIONS
19	Preparation and characterization of metal-organic framework MIL-101(Cr)-coated solid-phase microextraction fiber. Analytica Chimica Acta, 2015, 853, 303-310.	5.4	142
20	Complete nitrogen removal and electricity production in Thauera-dominated air-cathode single chambered microbial fuel cell. Chemical Engineering Journal, 2019, 356, 506-515.	12.7	142
21	Enhancement of the visible light activity and stability of Ag2CO3 by formation of AgI/Ag2CO3 heterojunction. Applied Surface Science, 2014, 319, 312-318.	6.1	90
22	Effect of nitrate on the performance of single chamber air cathode microbial fuel cells. Water Research, 2008, 42, 4743-4750.	11.3	85
23	Design and fabrication of heterojunction photocatalysts for energy conversion and pollutant degradation. Chinese Journal of Catalysis, 2014, 35, 1609-1618.	14.0	80
24	In situ growth of IRMOF-3 combined with ionic liquids to prepare solid-phase microextraction fibers. Analytica Chimica Acta, 2014, 829, 22-27.	5.4	80
25	Electron efficiency of zero-valent iron for groundwater remediation and wastewater treatment. Chemical Engineering Journal, 2013, 215-216, 90-95.	12.7	7 5
26	A visible-light-driven core-shell like Ag2S@Ag2CO3 composite photocatalyst with high performance in pollutants degradation. Chemosphere, 2016, 157, 250-261.	8.2	73
27	Increased sustainable electricity generation in up-flow air-cathode microbial fuel cells. Biosensors and Bioelectronics, 2008, 23, 1157-1160.	10.1	65
28	Effect of external resistance on the sensitivity of microbial fuel cell biosensor for detection of different types of pollutants. Bioelectrochemistry, 2019, 125, 71-78.	4.6	64
29	Homogeneous deposition-assisted synthesis of iron–nitrogen composites on graphene as highly efficient non-precious metal electrocatalysts for microbial fuel cell power generation. Journal of Power Sources, 2015, 278, 773-781.	7.8	59
30	Optimizing the performance of organics and nutrient removal in constructed wetland–microbial fuel cell systems. Science of the Total Environment, 2019, 653, 860-871.	8.0	59
31	Heterotrophic anodic denitrification improves carbon removal and electricity recovery efficiency in microbial fuel cells. Chemical Engineering Journal, 2019, 370, 527-535.	12.7	56
32	Overview of recent developments of resource recovery from wastewater via electrochemistry-based technologies. Science of the Total Environment, 2021, 757, 143901.	8.0	55
33	Dimethyl phthalate degradation at novel and efficient electro-Fenton cathode. Applied Catalysis B: Environmental, 2014, 156-157, 1-7.	20.2	47
34	Performance and microbial community of a novel non-aeration-based up-flow bioelectrochemical filter (UBEF) treating real domestic wastewater. Chemical Engineering Journal, 2018, 348, 271-280.	12.7	47
35	Impact of heterotrophic denitrification on BOD detection of the nitrate-containing wastewater using microbial fuel cell-based biosensors. Chemical Engineering Journal, 2020, 394, 125042.	12.7	47
36	An overview of bromate formation in chemical oxidation processes: Occurrence, mechanism, influencing factors, risk assessment, and control strategies. Chemosphere, 2019, 237, 124521.	8.2	44

#	Article	IF	Citations
37	Titanium dioxide as photocatalyst on porous nickel: Adsorption and the photocatalytic degradation of sulfosalicylic acid. Chemosphere, 1999, 38, 283-292.	8.2	43
38	Binary-phase TiO2 modified Bi2MoO6 crystal for effective removal of antibiotics under visible light illumination. Materials Research Bulletin, 2019, 112, 336-345.	5.2	43
39	One-pot synthesis of BiOCl nanosheets with dual functional carbon for ultra-highly efficient photocatalytic degradation of RhB. Environmental Research, 2020, 182, 109077.	7.5	43
40	Enhancement of Fenton degradation by catechol in a wide initial pH range. Separation and Purification Technology, 2016, 169, 202-209.	7.9	42
41	Applications of shell-isolated nanoparticles in surface-enhanced Raman spectroscopy and fluorescence. TrAC - Trends in Analytical Chemistry, 2015, 66, 103-117.	11.4	41
42	Evaluation of an intermittent-aeration constructed wetland for removing residual organics and nutrients from secondary effluent: Performance and microbial analysis. Bioresource Technology, 2021, 329, 124897.	9.6	41
43	Comparative analysis of microbial fuel cell based biosensors developed with a mixed culture and Shewanella loihica PV-4 and underlying biological mechanism. Bioresource Technology, 2018, 265, 415-421.	9.6	39
44	Fenton-like degradation of dimethyl phthalate enhanced by quinone species. Journal of Hazardous Materials, 2020, 382, 121007.	12.4	39
45	Enhanced nitrate reduction reaction via efficient intermediate nitrite conversion on tunable CuxNiy/NC electrocatalysts. Journal of Hazardous Materials, 2022, 421, 126628.	12.4	39
46	Boosting nitrate electroreduction to ammonia via in situ generated stacking faults in oxide-derived copper. Chemical Engineering Journal, 2022, 446, 137341.	12.7	39
47	Phosphorous removal and high-purity struvite recovery from hydrolyzed urine with spontaneous electricity production in Mg-air fuel cell. Chemical Engineering Journal, 2020, 391, 123517.	12.7	38
48	Substrate salinity: A critical factor regulating the performance of microbial fuel cells, a review. Science of the Total Environment, 2021, 763, 143021.	8.0	37
49	Electron-deficient CuÎ′+ stabilized by interfacial Cu–O-Al bonding for accelerating electrocatalytic nitrate conversion. Chemical Engineering Journal, 2022, 435, 134853.	12.7	37
50	Aqueous Cr(VI) reduction by electrodeposited zero-valent iron at neutral pH: Acceleration by organic matters. Journal of Hazardous Materials, 2009, 163, 370-375.	12.4	36
51	Enhancing the Electricity Generation and Nitrate Removal of Microbial Fuel Cells With a Novel Denitrifying Exoelectrogenic Strain EB-1. Frontiers in Microbiology, 2018, 9, 2633.	3.5	34
52	A highly-ordered porous carbon material based cathode for energy-efficient electro-Fenton process. Separation and Purification Technology, 2013, 106, 32-37.	7.9	32
53	Assessing the electron transfer and oxygen mass transfer of the oxygen reduction reaction using a new electrode kinetic equation. Physical Chemistry Chemical Physics, 2018, 20, 16159-16166.	2.8	29
54	Reaction kinetics of photocatalytic degradation of sulfosalicylic acid using TiO2 microspheres. Journal of Hazardous Materials, 2009, 163, 1101-1106.	12.4	25

#	Article	IF	CITATIONS
55	One-pot degradation of urine wastewater by combining simultaneous halophilic nitrification and aerobic denitrification in air-exposed biocathode microbial fuel cells (AEB-MFCs). Science of the Total Environment, 2020, 748, 141379.	8.0	24
56	Bifunctional cathode using a biofilm and Pt/C catalyst for simultaneous electricity generation and nitrification in microbial fuel cells. Bioresource Technology, 2020, 306, 123120.	9.6	24
57	Development of a trickle bed reactor of electro-Fenton process for wastewater treatment. Journal of Hazardous Materials, 2013, 261, 570-576.	12.4	23
58	Enhancing the power performance of sediment microbial fuel cells by novel strategies: Overlying water flow and hydraulic-driven cathode rotating. Science of the Total Environment, 2019, 678, 533-542.	8.0	22
59	Rapid detection of biodegradable organic matter in polluted water with microbial fuel cell sensor: Method of partial coulombic yield. Bioelectrochemistry, 2020, 133, 107488.	4.6	22
60	The j–pH diagram of interfacial reactions involving H+ and OHâ^'. Journal of Energy Chemistry, 2020, 50, 339-343.	12.9	21
61	Quantitatively assessing the role played by carbonate radicals in bromate formation by ozonation. Journal of Hazardous Materials, 2019, 363, 428-438.	12.4	20
62	Unveiling organic loading shock-resistant mechanism in a pilot-scale moving bed biofilm reactor-assisted dual-anaerobic-anoxic/oxic system for effective municipal wastewater treatment. Bioresource Technology, 2022, 347, 126339.	9.6	20
63	Comparative activity of TiO2 microspheres and P25 powder for organic degradation: Implicative importance of structural defects and organic adsorption. Applied Surface Science, 2014, 319, 2-7.	6.1	19
64	Quantifying biodegradable organic matter in polluted water on the basis of coulombic yield. Talanta, 2018, 176, 485-491.	5.5	19
65	A novel design for an ozone contact reactor and its performance on hydrodynamics, disinfection, bromate formation and oxidation. Chemical Engineering Journal, 2017, 328, 207-214.	12.7	18
66	Enhancing sensitivity of microbial fuel cell sensors for low concentration biodegradable organic matter detection: Regulation of substrate concentration, anode area and external resistance. Journal of Environmental Sciences, 2021, 101, 227-235.	6.1	17
67	Recent progress on the recovery of valuable resources from source-separated urine on-site using electrochemical technologies: A review. Chemical Engineering Journal, 2022, 442, 136200.	12.7	17
68	Hibernations of electroactive bacteria provide insights into the flexible and robust BOD detection using microbial fuel cell-based biosensors. Science of the Total Environment, 2021, 753, 142244.	8.0	16
69	Improved oxygen reduction reaction activity of three-dimensional porous N-doped graphene from a soft-template synthesis strategy in microbial fuel cells. RSC Advances, 2016, 6, 105211-105221.	3.6	15
70	Novel Porous Nitrogen Doped Graphene/Carbon Black Composites as Efficient Oxygen Reduction Reaction Electrocatalyst for Power Generation in Microbial Fuel Cell. Nanomaterials, 2019, 9, 836.	4.1	14
71	Validation of H2O2-mediated pathway model for elucidating oxygen reduction mechanism: Experimental evidences and theoretical simulations. Electrochimica Acta, 2019, 313, 378-388.	5.2	13
72	Correlations between soil geochemical properties and Fe(III) reduction suggest microbial reducibility of iron in different soils from Southern China. Catena, 2014, 123, 176-187.	5.0	8

#	Article	IF	CITATIONS
73	Membrane penetration of nitrogen and its effects on nitrogen removal in dual-chambered microbial fuel cells. Chemosphere, 2022, 297, 134038.	8.2	8
74	The preparation and characterization of CaMg(CO3)2@Ag2CO3/Ag2S/NCQD nanocomposites and their photocatalytic performance in phenol degradation. Journal of Nanoparticle Research, 2018, 20, 1.	1.9	7
75	Unveiling the role of gas permeability in air cathodes and performance enhancement by waterproof membrane fabricating method. Journal of Power Sources, 2020, 449, 227570.	7.8	7
76	Derivative-Extremum Analysis Principle for Irreversible Electrode Reactions: Feature Parameter Extractions from Polarization Curves. Journal of Physical Chemistry C, 2020, 124, 1950-1957.	3.1	5
77	Transport Behavior of Engineered Nanosized Photocatalytic Materials in Water. Journal of Nanomaterials, 2013, 2013, 1-13.	2.7	4
78	A Trickle Bed Electrochemical Reactor for Generation of Hydrogen Peroxide and Degradation of an Azo Dye in Water. Journal of Advanced Oxidation Technologies, 2015, 18 , .	0.5	4
79	Perchlorate Removal Using a Minimized Dosage of Electrodeposited Zero-Valent Iron. Journal of Environmental Engineering, ASCE, 2015, 141, 04014064.	1.4	2
80	Acid–base transport model depicting the dynamic <scp>pH</scp> response of interfacial reactions. AICHE Journal, 2022, 68, .	3.6	2
81	Alternative assessment of nano-TiO2 sedimentation under different conditions based on sedimentation efficiency at quasi-stable state. Journal of Nanoparticle Research, 2015, 17, 1.	1.9	1
82	Bromate formation during oxidation of bromide-containing water by the CuO catalyzed peroxymonosulfate process. Chinese Chemical Letters, 2022, 33, 4786-4791.	9.0	1
83	Improved Electron Efficiency of Zero-Valent Iron towards Cr(VI) Reduction after Sequestering in Al2O3 Microspheres. International Journal of Environmental Research and Public Health, 2022, 19, 8367.	2.6	1
84	The Role of Denitrifying Bacteria Within the Bioelectrochemical System for Nitrate-Containing Wastewater Treatment., 2020,, 257-268.		0
85	Derivative-extremum analysis of current-potential curves showing electrochemical kinetics in the full reversibility range. Chinese Chemical Letters, 2023, 34, 107185.	9.0	O