Ilaria Russo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/685267/publications.pdf Version: 2024-02-01

Ιι λριλ Ριιςςο

#	Article	IF	CITATIONS
1	Diabetes-associated cardiac fibrosis: Cellular effectors, molecular mechanisms and therapeutic opportunities. Journal of Molecular and Cellular Cardiology, 2016, 90, 84-93.	1.9	343
2	Gene therapy augments the efficacy of hematopoietic cell transplantation and fully corrects mucopolysaccharidosis type I phenotype in the mouse model. Blood, 2010, 116, 5130-5139.	1.4	159
3	Opposing Actions of Fibroblast and Cardiomyocyte Smad3 Signaling in the Infarcted Myocardium. Circulation, 2018, 137, 707-724.	1.6	128
4	Inflammation as a therapeutic target in myocardial infarction: learning from past failures to meet future challenges. Translational Research, 2016, 167, 152-166.	5.0	120
5	Characterization of a mouse model of obesity-related fibrotic cardiomyopathy that recapitulates features of human heart failure with preserved ejection fraction. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 315, H934-H949.	3.2	112
6	Smad3 Signaling Promotes Fibrosis While Preserving Cardiac and Aortic Geometry in Obese Diabetic Mice. Circulation: Heart Failure, 2015, 8, 788-798.	3.9	99
7	Protective Effects of Activated Myofibroblasts in the Pressure-Overloaded Myocardium Are Mediated Through Smad-Dependent Activation of a Matrix-Preserving Program. Circulation Research, 2019, 124, 1214-1227.	4.5	96
8	Myocardial Galectin-3 Expression Is Associated with Remodeling of the Pressure-Overloaded Heart and May Delay the Hypertrophic Response without Affecting Survival, Dysfunction, and Cardiac Fibrosis. American Journal of Pathology, 2016, 186, 1114-1127.	3.8	75
9	Left atrial remodeling, hypertrophy, and fibrosis in mouse models of heart failure. Cardiovascular Pathology, 2017, 30, 27-37.	1.6	51
10	Postresuscitation Treatment With Argon Improves Early Neurological Recovery in a Porcine Model of Cardiac Arrest. Shock, 2014, 41, 72-78.	2.1	49
11	Ranolazine prevents INaL enhancement and blunts myocardial remodelling in a model of pulmonary hypertension. Cardiovascular Research, 2014, 104, 37-48.	3.8	42
12	Early kynurenine pathway activation following cardiac arrest in rats, pigs, and humans. Resuscitation, 2013, 84, 1604-1610.	3.0	35
13	Duration of Untreated Cardiac Arrest and Clinical Relevance of Animal Experiments: The Relationship Between the "No-Flow―Duration and the Severity of Post-Cardiac Arrest Syndrome in a Porcine Model. Shock, 2018, 49, 205-212.	2.1	23
14	Ibuprofen plus isosorbide dinitrate treatment in the mdx mice ameliorates dystrophic heart structure. Pharmacological Research, 2013, 73, 35-43.	7.1	22
15	Histone Deacetylase Inhibition Enhances Self Renewal and Cardioprotection by Human Cord Blood-Derived CD34+ Cells. PLoS ONE, 2011, 6, e22158.	2.5	21
16	Relationship between post-cardiac arrest myocardial oxidative stress and myocardial dysfunction in the rat. Journal of Biomedical Science, 2014, 21, 70.	7.0	18
17	A novel echocardiographic method closely agrees with cardiac magnetic resonance in the assessment of left ventricular function in infarcted mice. Scientific Reports, 2019, 9, 3580.	3.3	15
18	Ventilation With Argon Improves Survival With Good Neurological Recovery After Prolonged Untreated Cardiac Arrest in Pigs. Journal of the American Heart Association, 2020, 9, e016494.	3.7	15

Ilaria Russo

#	Article	IF	CITATIONS
19	Clinico-histopathologic and single-nuclei RNA-sequencing insights into cardiac injury and microthrombi in critical COVID-19. JCI Insight, 2022, 7, .	5.0	14
20	Monocrotaline-induced pulmonary arterial hypertension: Time-course of injury and comparative evaluation of macitentan and Y-27632, a Rho kinase inhibitor. European Journal of Pharmacology, 2019, 865, 172777.	3.5	11
21	Ranolazine ameliorates postresuscitation electrical instability and myocardial dysfunction and improves survival with good neurologic recovery in a rat model of cardiac arrest. Heart Rhythm, 2014, 11, 1641-1647.	0.7	9
22	Ex vivo-expanded bone marrow CD34+ for acute myocardial infarction treatment: in vitro and in vivo studies. Cytotherapy, 2011, 13, 1140-1152.	0.7	8
23	Trabectedin and Lurbinectedin Extend Survival of Mice Bearing C26 Colon Adenocarcinoma, without Affecting Tumor Growth or Cachexia. Cancers, 2020, 12, 2312.	3.7	5
24	The role of metabolic diseases in cardiotoxicity associated with cancer therapy: What we know, what we would know. Life Sciences, 2020, 255, 117843.	4.3	2
25	Primary pulmonary arterial hypertension: Protocol to assess comprehensively in the rat the response to pharmacologic treatments. MethodsX, 2020, 7, 100771.	1.6	1
26	Relationship between plasma high-sensitive cardiac Troponin T and infarct size in a porcine model of acute myocardial infarction and cardiac arrest and resuscitation. Resuscitation, 2014, 85, S13-S14.	3.0	0
27	Authors' Reply. American Journal of Pathology, 2016, 186, 2234-2235.	3.8	0
28	Differential Cardiac Contractile and Diastolic Responses Underlie Sex Differences in Right Ventricular Response to Pressure Overload. Journal of Cardiac Failure, 2019, 25, S35.	1.7	0
29	Abstract 127: Severity of Postresuscitation Myocardial Dysfunction Is Dependent on the Duration of Untreated Cardiac Arrest. Circulation, 2014, 130, .	1.6	0
30	Sâ€Palmitoylation Mediates Caveolae Localization and Limits Cysteine Oxidation of GCâ€1 in Cardiomyocytes. FASEB Journal, 2020, 34, 1-1.	0.5	0
31	Abstract 545: Sex Difference in Right Ventricular Response to Pressure Overload is Associated With Differential Fibrotic Remodeling and Cyclic Guanosine Monophosphate Signaling. Circulation Research, 2020, 127, .	4.5	0
32	Abstract 546: S-palmitoylation Mediates Caveolae Localization and Limits Cysteine Oxidation of Gc-1 in Cardiomyocytes. Circulation Research, 2020, 127, .	4.5	0