Francesco Tombola

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6852589/publications.pdf

Version: 2024-02-01

201674 189892 3,579 50 27 50 citations h-index g-index papers 51 51 51 3434 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Thermodynamics and Mechanism of the Membrane Permeation of Hv1 Channel Blockers. Journal of Membrane Biology, $2021, 254, 5-16$.	2.1	6
2	Voltage-gated proton channels from fungi highlight role of peripheral regions in channel activation. Communications Biology, 2021, 4, 261.	4.4	17
3	HIFs: New arginine mimic inhibitors of the Hv1 channel with improved VSD–ligand interactions. Journal of General Physiology, 2021, 153, .	1.9	14
4	A novel Hv1 inhibitor reveals a new mechanism of inhibition of a voltage-sensing domain. Journal of General Physiology, $2021, 153, \ldots$	1.9	8
5	Insights on small molecule binding to the Hv1 proton channel from free energy calculations with molecular dynamics simulations. Scientific Reports, 2020, 10, 13587.	3.3	8
6	Voltage-dependent structural models of the human Hv1 proton channel from long-timescale molecular dynamics simulations. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 13490-13498.	7.1	29
7	Growth and Spatial Control of Murine Neural Stem Cells on Reflectin Films. ACS Biomaterials Science and Engineering, 2020, 6, 1311-1320.	5.2	4
8	Myosin-II mediated traction forces evoke localized Piezo1-dependent Ca2+ flickers. Communications Biology, 2019, 2, 298.	4.4	141
9	Exploiting Î-Stacking Interactions to Improve Inhibition of the Hv1 Channel by Aromatic Guanidine Derivatives. Biophysical Journal, 2018, 114, 374a.	0.5	1
10	Atomistic Modeling of Ion Conduction through the Voltage-Sensing Domain of the <i>Shaker</i> K ⁺ Ion Channel. Journal of Physical Chemistry B, 2017, 121, 3804-3812.	2.6	9
11	The Hv1 proton channel responds to mechanical stimuli. Journal of General Physiology, 2016, 148, 405-418.	1.9	25
12	A lipid two-step. Nature Chemical Biology, 2016, 12, 202-203.	8.0	2
13	Reflectin as a Material for Neural Stem Cell Growth. ACS Applied Materials & Samp; Interfaces, 2016, 8, 278-284.	8.0	24
14	Interrogation of the intersubunit interface of the open Hv1 proton channel with a probe of allosteric coupling. Scientific Reports, 2015, 5, 14077.	3.3	25
15	Static stretch affects neural stem cell differentiation in an extracellular matrix-dependent manner. Scientific Reports, 2015, 5, 8499.	3.3	78
16	Stretch-activated ion channel Piezo1 directs lineage choice in human neural stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16148-16153.	7.1	446
17	Molecular determinants of Hv1 proton channel inhibition by guanidine derivatives. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9971-9976.	7.1	86
18	Evidence for Functional Diversity between the Voltage-Gated Proton Channel Hv1 and Its Closest Related Protein HVRP1. PLoS ONE, 2014, 9, e105926.	2.5	14

#	Article	IF	CITATIONS
19	Voltage-Sensing Domain of Voltage-Gated Proton Channel Hv1 Shares Mechanism of Block with Pore Domains. Neuron, 2013, 79, 202.	8.1	1
20	Voltage-Sensing Domain of Voltage-Gated Proton Channel Hv1 Shares Mechanism of Block with Pore Domains. Neuron, 2013, 77, 274-287.	8.1	81
21	Water wires in atomistic models of the Hv1 proton channel. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 286-293.	2.6	67
22	The opening of the two pores of the Hv1 voltage-gated proton channel is tuned by cooperativity. Nature Structural and Molecular Biology, 2010, 17, 44-50.	8.2	125
23	Architecture and gating of Hv1 proton channels. Journal of Physiology, 2009, 587, 5325-5329.	2.9	21
24	The Voltage-Gated Proton Channel Hv1 Has Two Pores, Each Controlled by One Voltage Sensor. Neuron, 2008, 58, 546-556.	8.1	226
25	Closing In on the Resting State of the Shaker K+ Channel. Neuron, 2007, 56, 124-140.	8.1	270
26	The twisted ion-permeation pathway of a resting voltage-sensing domain. Nature, 2007, 445, 546-549.	27.8	130
27	Red wine and green tea reduceH pylori-orVacA-inducedgastritis in a mouse model. World Journal of Gastroenterology, 2007, 13, 349.	3.3	59
28	How Does Voltage Open an Ion Channel?. Annual Review of Cell and Developmental Biology, 2006, 22, 23-52.	9.4	286
29	The Cooperative Voltage Sensor Motion that Gates a Potassium Channel. Journal of General Physiology, 2005, 125, 57-69.	1.9	118
30	Molecular Handles for the Mechanical Manipulation of Single-Membrane Proteins in Living Cells. IEEE Transactions on Nanobioscience, 2005, 4, 269-276.	3.3	3
31	The properties of the mitochondrial megachannel in mitoplasts from human colon carcinoma cells are not influenced by Bax. FEBS Letters, 2005, 579, 3695-3700.	2.8	27
32	Voltage-Sensing Arginines in a Potassium Channel Permeate and Occlude Cation-Selective Pores. Neuron, 2005, 45, 379-388.	8.1	248
33	How Far Will You Go to Sense Voltage?. Neuron, 2005, 48, 719-725.	8.1	60
34	Bax Does Not Directly Participate in the Ca2+-induced Permeability Transition of Isolated Mitochondria. Journal of Biological Chemistry, 2004, 279, 37415-37422.	3.4	65
35	Plant polyphenols inhibit VacA, a toxin secreted by the gastric pathogenHelicobacter pylori. FEBS Letters, 2003, 543, 184-189.	2.8	84
36	The vacuolating toxin of <i>Helicobacter pylori</i> mimicks the CFTRâ€mediated chloride conductance ¹ . FEBS Letters, 2002, 532, 237-240.	2.8	5

#	Article	IF	CITATIONS
37	DNA Interacts With <i>Bacillus Subtilis</i> Mechano-sensitive Channels in Native Membrane Patches. Cellular Physiology and Biochemistry, 2002, 12, 127-134.	1.6	8
38	The Vibrio cholerae haemolysin anion channel is required for cell vacuolation and death. Cellular Microbiology, 2002, 4, 397-409.	2.1	39
39	How the Loop and Middle Regions Influence the Properties of Helicobacter pylori VacA Channels. Biophysical Journal, 2001, 81, 3204-3215.	0.5	15
40	Vacuolation induced by VacA toxin of Helicobacter pylorirequires the intracellular accumulation of membrane permeant bases, Clâ and water. FEBS Letters, 2001, 508, 479-483.	2.8	30
41	The Helicobacter pylori VacA toxin is a urea permease that promotes urea diffusion across epithelia. Journal of Clinical Investigation, 2001, 108, 929-937.	8.2	78
42	Extramitochondrial porin: facts and hypotheses. Journal of Bioenergetics and Biomembranes, 2000, 32, 79-89.	2.3	55
43	Blockers of VacA Provide Insights into the Structure of the Pore. Biophysical Journal, 2000, 79, 863-873.	0.5	26
44	Ca2+-reversible inhibition of the mitochondrial megachannel by ubiquinone analogues. FEBS Letters, 2000, 480, 89-94.	2.8	26
45	Porin Is Present in the Plasma Membrane Where It Is Concentrated in Caveolae and Caveolae-related Domains. Journal of Biological Chemistry, 1999, 274, 29607-29612.	3.4	112
46	Inhibition of the vacuolating and anion channel activities of the VacA toxin ofHelicobacter pylori. FEBS Letters, 1999, 460, 221-225.	2.8	67
47	Helicobacter pylori Vacuolating Toxin Forms Anion-Selective Channels in Planar Lipid Bilayers: Possible Implications for the Mechanism of Cellular Vacuolation. Biophysical Journal, 1999, 76, 1401-1409.	0.5	145
48	Novel Aspects of the Electrophysiology of Mitochondrial Porin. Biochemical and Biophysical Research Communications, 1998, 243, 258-263.	2.1	42
49	Doubleâ€stranded DNA can be translocated across a planar membrane containing purified mitochondrial porin. FASEB Journal, 1998, 12, 495-502.	0.5	62
50	DNA Translocation Across Planar Bilayers Containing Bacillus subtilis Ion Channels. Journal of Biological Chemistry, 1997, 272, 25275-25282.	3 . 4	58