
Miguel P Soares

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6852332/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A hypometabolic defense strategy against malaria. Cell Metabolism, 2022, 34, 1183-1200.e12.	16.2	10
2	Loss of $\hat{l}\pm$ -gal during primate evolution enhanced antibody-effector function and resistance to bacterial sepsis. Cell Host and Microbe, 2021, 29, 347-361.e12.	11.0	14
3	Heme catabolism by tumor-associated macrophages controls metastasis formation. Nature Immunology, 2021, 22, 595-606.	14.5	59
4	Glycan-based shaping of the microbiota during primate evolution. ELife, 2021, 10, .	6.0	8
5	Trained innate immunity, long-lasting epigenetic modulation, and skewed myelopoiesis by heme. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	40
6	Interleukin-1 promotes autoimmune neuroinflammation by suppressing endothelial heme oxygenase-1 at the blood–brain barrier. Acta Neuropathologica, 2020, 140, 549-567.	7.7	47
7	M.Âtuberculosis Reprograms Hematopoietic Stem Cells to Limit Myelopoiesis and Impair Trained Immunity. Cell, 2020, 183, 752-770.e22.	28.9	148
8	Heme Oxygenase-1 Induction by Blood-Feeding Arthropods Controls Skin Inflammation and Promotes Disease Tolerance. Cell Reports, 2020, 33, 108317.	6.4	10
9	Donor-Derived Myeloid Heme Oxygenase-1 Controls the Development of Graft-Versus-Host Disease. Frontiers in Immunology, 2020, 11, 579151.	4.8	1
10	Heme oxygenase-1 orchestrates the immunosuppressive program of tumor-associated macrophages. JCI Insight, 2020, 5, .	5.0	32
11	Labile heme impairs hepatic microcirculation and promotes hepatic injury. Archives of Biochemistry and Biophysics, 2019, 672, 108075.	3.0	21
12	Disease Tolerance as an Inherent Component of Immunity. Annual Review of Immunology, 2019, 37, 405-437.	21.8	109
13	Renal control of disease tolerance to malaria. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 5681-5686.	7.1	58
14	Ferritin regulates organismal energy balance and thermogenesis. Molecular Metabolism, 2019, 24, 64-79.	6.5	42
15	Electrophilic properties of itaconate and derivatives regulate theÂlκBζ–ATF3 inflammatory axis. Nature, 2018, 556, 501-504.	27.8	438
16	Cross-Talk Between Iron and Glucose Metabolism in the Establishment of Disease Tolerance. Frontiers in Immunology, 2018, 9, 2498.	4.8	18
17	Ferritin H Deficiency in Myeloid Compartments Dysregulates Host Energy Metabolism and Increases Susceptibility to Mycobacterium tuberculosis Infection. Frontiers in Immunology, 2018, 9, 860.	4.8	53
18	Innate Nutritional Immunity. Journal of Immunology, 2018, 201, 11-18.	0.8	78

#	Article	IF	CITATIONS
19	IL-22 controls iron-dependent nutritional immunity against systemic bacterial infections. Science Immunology, 2017, 2, .	11.9	50
20	Metabolic Adaptation Establishes Disease Tolerance to Sepsis. Cell, 2017, 169, 1263-1275.e14.	28.9	207
21	Disease tolerance and immunity in host protection against infection. Nature Reviews Immunology, 2017, 17, 83-96.	22.7	265
22	Cross-Regulation of Iron and Glucose Metabolism in Response to Infection. Biochemistry, 2017, 56, 5713-5714.	2.5	2
23	Specific expression of heme oxygenase-1 by myeloid cells modulates renal ischemia-reperfusion injury. Scientific Reports, 2017, 7, 197.	3.3	40
24	Involvement of the p62/NRF2 signal transduction pathway on erythrophagocytosis. Scientific Reports, 2017, 7, 5812.	3.3	16
25	Characterization of plasma labile heme in hemolytic conditions. FEBS Journal, 2017, 284, 3278-3301.	4.7	55
26	Heme oxygenase 1 controls early innate immune response of macrophages to <i>Salmonella</i> Typhimurium infection. Cellular Microbiology, 2016, 18, 1374-1389.	2.1	55
27	Beyond killing. Evolution, Medicine and Public Health, 2016, 2016, 148-157.	2.5	87
28	Microbiota Control of Malaria Transmission. Trends in Parasitology, 2016, 32, 120-130.	3.3	23
29	Macrophages and Iron Metabolism. Immunity, 2016, 44, 492-504.	14.3	301
30	Red alert: labile heme is an alarmin. Current Opinion in Immunology, 2016, 38, 94-100.	5.5	119
31	Identification of cyclins A1, E1 and vimentin as downstream targets of heme oxygenase-1 in vascular endothelial growth factor-mediated angiogenesis. Scientific Reports, 2016, 6, 29417.	3.3	18
32	Nrf2 as a master regulator of tissue damage control and disease tolerance to infection. Biochemical Society Transactions, 2015, 43, 663-668.	3.4	39
33	The Iron age of host–microbe interactions. EMBO Reports, 2015, 16, 1482-1500.	4.5	186
34	Disruption of Parasite <i>hmgb2</i> Gene Attenuates Plasmodium berghei ANKA Pathogenicity. Infection and Immunity, 2015, 83, 2771-2784.	2.2	15
35	Macrophage and epithelial cell H-ferritin expression regulates renal inflammation. Kidney International, 2015, 88, 95-108.	5.2	77
36	Microbiota's No Wasting Policy. Cell, 2015, 163, 1057-1058.	28.9	1

#	Article	IF	CITATIONS
37	Macrophages sense and kill bacteria through carbon monoxide–dependent inflammasome activation. Journal of Clinical Investigation, 2014, 124, 4926-4940.	8.2	151
38	Gut Microbiota Elicits a Protective Immune Response against Malaria Transmission. Cell, 2014, 159, 1277-1289.	28.9	279
39	Coupling Heme and Iron Metabolism <i>via</i> Ferritin H Chain. Antioxidants and Redox Signaling, 2014, 20, 1754-1769.	5.4	126
40	"Nuts and Bolts―of Disease Tolerance. Immunity, 2014, 41, 176-178.	14.3	7
41	Control of Disease Tolerance to Malaria by Nitric Oxide and Carbon Monoxide. Cell Reports, 2014, 8, 126-136.	6.4	62
42	Tissue damage control in disease tolerance. Trends in Immunology, 2014, 35, 483-494.	6.8	147
43	Anthracyclines Induce DNA Damage Response-Mediated Protection against Severe Sepsis. Immunity, 2013, 39, 874-884.	14.3	131
44	The Microglial α7-Acetylcholine Nicotinic Receptor Is a Key Element in Promoting Neuroprotection by Inducing Heme Oxygenase-1 <i>via</i> Nuclear Factor Erythroid-2-Related Factor 2. Antioxidants and Redox Signaling, 2013, 19, 1135-1148.	5.4	162
45	The Genetic Basis of Escherichia coli Pathoadaptation to Macrophages. PLoS Pathogens, 2013, 9, e1003802.	4.7	63
46	Heme Catabolism by Heme Oxygenase-1 Confers Host Resistance to Mycobacterium Infection. Infection and Immunity, 2013, 81, 2536-2545.	2.2	71
47	Atherogenesis May Involve the Prooxidant and Proinflammatory Effects of Ferryl Hemoglobin. Oxidative Medicine and Cellular Longevity, 2013, 2013, 1-13.	4.0	41
48	Metabolic Adaptation to Tissue Iron Overload Confers Tolerance to Malaria. Cell Host and Microbe, 2012, 12, 693-704.	11.0	123
49	Regulation of Nuclear Factor κB (NF-κB) Transcriptional Activity via p65 Acetylation by the Chaperonin Containing TCP1 (CCT). PLoS ONE, 2012, 7, e42020.	2.5	26
50	Heme Cytotoxicity and the Pathogenesis of Immune-Mediated Inflammatory Diseases. Frontiers in Pharmacology, 2012, 3, 77.	3.5	86
51	Disease Tolerance as a Defense Strategy. Science, 2012, 335, 936-941.	12.6	1,335
52	Sickle Hemoglobin Confers Tolerance to Plasmodium Infection. Cell, 2011, 145, 398-409.	28.9	267
53	Haem oxygenaseâ€1 dictates intrauterine fetal survival in mice via carbon monoxide. Journal of Pathology, 2011, 225, 293-304.	4.5	80
54	CLECâ€⊋ signaling via Syk in myeloid cells can regulate inflammatory responses. European Journal of Immunology, 2011, 41, 3040-3053.	2.9	75

#	Article	IF	CITATIONS
55	Heme Sensitization to TNF-Mediated Programmed Cell Death. Advances in Experimental Medicine and Biology, 2011, 691, 211-219.	1.6	21
56	Red Cells, Hemoglobin, Heme, Iron, and Atherogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 1347-1353.	2.4	200
57	A Central Role for Free Heme in the Pathogenesis of Severe Sepsis. Science Translational Medicine, 2010, 2, 51ra71.	12.4	412
58	Dendritic Cell Function in Transplantation Arteriosclerosis Is Regulated by Heme Oxygenase 1. Circulation Research, 2010, 106, 1656-1666.	4.5	30
59	Mechanisms of Cell Protection by Heme Oxygenase-1. Annual Review of Pharmacology and Toxicology, 2010, 50, 323-354.	9.4	1,057
60	Heme oxygenase-1 affords protection against noncerebral forms of severe malaria. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 15837-15842.	7.1	246
61	Oxidized Hemoglobin Is an Endogenous Proinflammatory Agonist That Targets Vascular Endothelial Cells. Journal of Biological Chemistry, 2009, 284, 29582-29595.	3.4	113
62	Heme Oxygenase 1 Determines Atherosclerotic Lesion Progression Into a Vulnerable Plaque. Circulation, 2009, 119, 3017-3027.	1.6	120
63	Termination of NF- $\hat{I}^{\circ}B$ activity through a gammaherpesvirus protein that assembles an EC5S ubiquitin-ligase. EMBO Journal, 2009, 28, 1283-1295.	7.8	54
64	Immunoregulatory effects of HO-1: how does it work?. Current Opinion in Pharmacology, 2009, 9, 482-489.	3.5	95
65	Heme oxygenase-1: from biology to therapeutic potential. Trends in Molecular Medicine, 2009, 15, 50-58.	6.7	212
66	Heme oxygenase-1 expression enhances vascular endothelial resistance to complement-mediated injury through induction of decay-accelerating factor: a role for increased bilirubin and ferritin. Blood, 2009, 113, 1598-1607.	1.4	83
67	A central role for free heme in the pathogenesis of severe malaria: the missing link?. Journal of Molecular Medicine, 2008, 86, 1097-1111.	3.9	172
68	Improved renal function after kidney transplantation is associated with heme oxygenaseâ€↓ polymorphism. Clinical Transplantation, 2008, 22, 609-616.	1.6	25
69	Heme Oxygenase-1 Is an Anti-Inflammatory Host Factor that Promotes Murine Plasmodium Liver Infection. Cell Host and Microbe, 2008, 3, 331-338.	11.0	127
70	Heme Oxygenase-1 Inhibits the Expression of Adhesion Molecules Associated with Endothelial Cell Activation via Inhibition of NF-κB <i>RelA</i> Phosphorylation at Serine 276. Journal of Immunology, 2007, 179, 7840-7851.	0.8	120
71	Heme oxygenase-1 in organ transplantation. Frontiers in Bioscience - Landmark, 2007, 12, 4932.	3.0	47
72	Heme oxygenase-1 and carbon monoxide suppress the pathogenesis of experimental cerebral malaria. Nature Medicine, 2007, 13, 703-710.	30.7	488

5

#	Article	IF	CITATIONS
73	Statinâ€mediated cytoprotection of human vascular endothelial cells: a role for Kruppelâ€like factor 2â€dependent induction of heme oxygenaseâ€1. Journal of Thrombosis and Haemostasis, 2007, 5, 2537-2546.	3.8	83
74	Heme oxygenase–1 and carbon monoxide suppress autoimmune neuroinflammation. Journal of Clinical Investigation, 2007, 117, 438-447.	8.2	268
75	Heme oxygenaseâ€∎ is essential for and promotes tolerance to transplanted organs. FASEB Journal, 2006, 20, 776-778.	0.5	103
76	Regulatory T cell maintenance of dominant tolerance: Induction of tissue self-defense?. Transplant Immunology, 2006, 17, 7-10.	1.2	16
77	Heme oxygenase-1 is not required for mouse regulatory T cell development and function. International Immunology, 2006, 19, 11-18.	4.0	45
78	The Antiapoptotic Effect of Heme Oxygenase-1 in Endothelial Cells Involves the Degradation of p38α MAPK Isoform. Journal of Immunology, 2006, 177, 1894-1903.	0.8	99
79	Heme oxygenase-1 (HO-1), a protective gene that prevents chronic graft dysfunction. Free Radical Biology and Medicine, 2005, 38, 426-435.	2.9	84
80	Bilirubin. Circulation, 2005, 112, 1030-1039.	1.6	223
81	Heme oxygenaseâ€∎ modulates the alloâ€immune response by promoting activationâ€induced cell death of T cells. FASEB Journal, 2005, 19, 1-22.	0.5	79
82	Donor Treatment With Carbon Monoxide Can Yield Islet Allograft Survival and Tolerance. Diabetes, 2005, 54, 1400-1406.	0.6	83
83	Heme Oxygenase-1 Modulates the Expression of Adhesion Molecules Associated with Endothelial Cell Activation. Journal of Immunology, 2004, 172, 3553-3563.	0.8	414
84	Biliverdin, a natural product of heme catabolism, induces tolerance to cardiac allografts. FASEB Journal, 2004, 18, 765-767.	0.5	178
85	Heme oxygenaseâ€1â€derived carbon monoxide protects hearts from transplantâ€associated ischemia reperfusion injury. FASEB Journal, 2004, 18, 771-772.	0.5	182
86	Cooperative effect of biliverdin and carbon monoxide on survival of mice in immune-mediated liver injury. Hepatology, 2004, 40, 1128-1135.	7.3	69
87	VEGF: is it just an inducer of heme oxygenase-1 expression?. Blood, 2004, 103, 751-751.	1.4	10
88	Carbon monoxide suppresses arteriosclerotic lesions associated with chronic graft rejection and with balloon injury. Nature Medicine, 2003, 9, 183-190.	30.7	493
89	Different Faces of the Heme-Heme Oxygenase System in Inflammation. Pharmacological Reviews, 2003, 55, 551-571.	16.0	503
90	Heme oxygenase-1: unleashing the protective properties of heme. Trends in Immunology, 2003, 24, 449-455.	6.8	1,054

#	Article	IF	CITATIONS
91	Heme oxygenase-1 and its reaction product, carbon monoxide, prevent inflammation-related apoptotic liver damage in mice. Hepatology, 2003, 38, 909-918.	7.3	86
92	Heme Oxygenase-1-derived Carbon Monoxide Requires the Activation of Transcription Factor NF-κB to Protect Endothelial Cells from Tumor Necrosis Factor-α-mediated Apoptosis. Journal of Biological Chemistry, 2002, 277, 17950-17961.	3.4	272
93	Expression of protective genes in human renal allografts: a regulatory response to injury associated with graft rejection1,2. Transplantation, 2002, 73, 1079-1085.	1.0	58
94	Modulation of Endothelial Cell Apoptosis by Heme Oxygenase-1-Derived Carbon Monoxide. Antioxidants and Redox Signaling, 2002, 4, 321-329.	5.4	123
95	Carbon Monoxide Protects Pancreatic Â-Cells From Apoptosis and Improves Islet Function/Survival After Transplantation. Diabetes, 2002, 51, 994-999.	0.6	108
96	TH2 cytokines regulate gene expression and proinflammatory responses in xenografts. Transplantation Proceedings, 2001, 33, 776-777.	0.6	3
97	Heme oxygenase-1, a protective gene that prevents the rejection of transplanted organs. Immunological Reviews, 2001, 184, 275-285.	6.0	81
98	Carbon Monoxide Generated by Heme Oxygenase-1 Suppresses the Rejection of Mouse-to-Rat Cardiac Transplants. Journal of Immunology, 2001, 166, 4185-4194.	0.8	440
99	SPECIFIC DEPLETION OF PREFORMED IgM NATURAL ANTIBODIES BY ADMINISTRATION OF ANTI-?? MONOCLONAL ANTIBODY SUPPRESSES HYPERACUTE REJECTION OF PIG TO BABOON RENAL XENOGRAFTS1. Transplantation, 2000, 70, 935-946.	1.0	22
100	Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway. Nature Medicine, 2000, 6, 422-428.	30.7	2,506
101	Long-Term Survival of Hamster Hearts in Presensitized Rats. Journal of Immunology, 2000, 164, 4883-4892.	0.8	37
102	Carbon Monoxide Generated by Heme Oxygenase 1 Suppresses Endothelial Cell Apoptosis. Journal of Experimental Medicine, 2000, 192, 1015-1026.	8.5	910
103	Regulation of NF-κB RelA Phosphorylation and Transcriptional Activity by p21 and Protein Kinase Cζ in Primary Endothelial Cells. Journal of Biological Chemistry, 1999, 274, 13594-13603.	3.4	177
104	Accommodation. Trends in Immunology, 1999, 20, 434-437.	7.5	82
105	C1q receptors and endothelial cell activation. Translational Research, 1999, 133, 520-522.	2.3	8
106	Rejection of hamster cardiac xenografts by rat CD4+ or CD8+ T cells. Transplantation Proceedings, 1999, 31, 959-960.	0.6	4
107	SUPPRESSION OF DELAYED XENOGRAFT REJECTION BY SPECIFIC DEPLETION OF ELICITED ANTIBODIES OF THE IgM ISOTYPE1. Transplantation, 1999, 68, 844-854.	1.0	21
108	Pathogenesis of and potential therapies for delayed xenograft rejection. Current Opinion in Organ Transplantation, 1999, 4, 80.	1.6	8

#	Article	IF	CITATIONS
109	Expression of heme oxygenase-1 can determine cardiac xenograft survival. Nature Medicine, 1998, 4, 1073-1077.	30.7	601
110	TRANSIENT COMPLEMENT INHIBITION PLUS T-CELL IMMUNOSUPPRESSION INDUCES LONG-TERM SURVIVAL OF MOUSE-TO-RAT CARDIAC XENOGRAFTS1, 2. Transplantation, 1998, 65, 1210-1215.	1.0	36
111	SURVIVAL OF ACCOMMODATED CARDIAC XENOGRAFTS UPON RETRANSPLANTATION INTO CYCLOSPORINE-TREATED RECIPIENTS1,2. Transplantation, 1998, 65, 1563-1569.	1.0	31
112	Modification of vascular responses in xenotransplantation: Inflammation and apoptosis. Nature Medicine, 1997, 3, 944-948.	30.7	108
113	EFFECTS OF LEFLUNOMIDE AND DEOXYSPERGUALIN IN THE GUINEA PIG???RAT CARDIAC MODEL OF DELAYED XENOGRAFT REJECTION. Transplantation, 1997, 64, 696-704.	1.0	31
114	XENOGENEIC ENDOTHELIAL CELLS ACTIVATE HUMAN PROTHROMBIN1,2. Transplantation, 1997, 64, 888-896.	1.0	100
115	Glucocorticoid-mediated Repression of NFκB Activity in Endothelial Cells Does Not Involve Induction of IκBα Synthesis. Journal of Biological Chemistry, 1996, 271, 19612-19616.	3.4	191
116	Depletion of IgM Xenoreactive Natural Antibodies by Injection of anti-mu Monoclonal Antibodies. Immunological Reviews, 1994, 141, 95-125.	6.0	22
117	Preformed antibody and complement rebound after plasma exchange: analysis of immunoglobulin isotypes and effect of splenectomy. Transplant Immunology, 1994, 2, 231-237.	1.2	10
118	IN VIVO DEPLETION OF XENOREACTIVE NATURAL ANTIBODIES WITH AN ANTI-μ MONOCLONAL ANTIBODY1,2. Transplantation, 1993, 56, 1427-1432.	1.0	37
119	CD23 Expression in Aged Rats. International Archives of Allergy and Immunology, 1992, 97, 330-336.	2.1	1