
Giacomo Garibotto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/685202/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Comparative Analysis of Nutritional Assessment Using Global Leadership Initiative on Malnutrition Versus Subjective Global Assessment and Malnutrition Inflammation Score in Maintenance Hemodialysis Patients. , 2022, 32, 476-482.		17
2	Assessing Global Kidney Nutrition Care. Clinical Journal of the American Society of Nephrology: CJASN, 2022, 17, 38-52.	4.5	23
3	Secondary Membranous Nephropathy Due to Benign Tumors in 2 Young Women: A Case Report. Kidney Medicine, 2022, 4, 100397.	2.0	0
4	MO582: Impaired HIF-1 Regulation in Skeletal Muscle of Patients With Advanced-Stage Chronic Kidney Disease. Nephrology Dialysis Transplantation, 2022, 37, .	0.7	0
5	SIRPα Mediates IGF1 Receptor in Cardiomyopathy Induced by Chronic Kidney Disease. Circulation Research, 2022, 131, 207-221.	4.5	7
6	n-3 PUFA dietary lipid replacement normalizes muscle mitochondrial function and oxidative stress through enhanced tissue mitophagy and protects from muscle wasting in experimental kidney disease. Metabolism: Clinical and Experimental, 2022, 133, 155242.	3.4	11
7	Serum IgG2 antibody multi-composition in systemic lupus erythematosus and in lupus nephritis (Part) Tj ETQq1 1	0,784314 1.9	l rgBT /Overl
8	Everolimus for BKV nephropathy in kidney transplant recipients: a prospective, controlled study Journal of Nephrology, 2021, 34, 531-538.	2.0	10
9	The International Society of Renal Nutrition and Metabolism Commentary on the National Kidney Foundation and Academy of Nutrition and Dietetics KDOQI Clinical Practice Guideline for Nutrition in Chronic Kidney Disease. , 2021, 31, 116-120.e1.		49
10	Kidney disease and all-cause mortality in patients with COVID-19 hospitalized in Genoa, Northern Italy. Journal of Nephrology, 2021, 34, 173-183.	2.0	52
11	Risk factors and action thresholds for the novel coronavirus pandemic. Insights from the Italian Society of Nephrology COVID-19 Survey. Journal of Nephrology, 2021, 34, 325-335.	2.0	11
12	Effects of Late Conversion from Twice-Daily to Once-Daily Slow Release Tacrolimus on the Insulin Resistance Indexes in Kidney Transplant Patients. Transplantology, 2021, 2, 49-56.	0.6	0
13	Effects of Different Dialysis Strategies on Inflammatory Cytokine Profile in Maintenance Hemodialysis Patients with COVID-19: A Randomized Trial. Journal of Clinical Medicine, 2021, 10, 1383.	2.4	6
14	Testosterone Disorders and Male Hypogonadism in Kidney Disease. Seminars in Nephrology, 2021, 41, 114-125.	1.6	6
15	Post-transplant de novo non donor-specific HLA antibodies are not associated with poor graft outcome in non-sensitized pediatric recipients of kidney transplantation. Transplant Immunology, 2021, 65, 101375.	1.2	1
16	Vadadustat in Patients with Anemia and Non–Dialysis-Dependent CKD. New England Journal of Medicine, 2021, 384, 1589-1600.	27.0	137
17	A Changing Perspective for Treatment of Chronic Kidney Disease. Journal of Clinical Medicine, 2021, 10, 3840.	2.4	3
18	How to Overcome Anabolic Resistance in Dialysis-Treated Patients?. Frontiers in Nutrition, 2021, 8, 701386.	3.7	5

2

#	Article	IF	CITATIONS
19	Myostatin/Activin-A Signaling in the Vessel Wall and Vascular Calcification. Cells, 2021, 10, 2070.	4.1	6
20	Renal Ischemia/Reperfusion Early Induces Myostatin and PCSK9 Expression in Rat Kidneys and HK-2 Cells. International Journal of Molecular Sciences, 2021, 22, 9884.	4.1	3
21	Second Wave Antibodies in Autoimmune Renal Diseases: The Case of Lupus Nephritis. Journal of the American Society of Nephrology: JASN, 2021, 32, 3020-3023.	6.1	6
22	Serum IgG2 antibody multicomposition in systemic lupus erythematosus and lupus nephritis (Part 1): cross-sectional analysis. Rheumatology, 2021, 60, 3176-3188.	1.9	9
23	Low Protein Diets and Plant-Based Low Protein Diets: Do They Meet Protein Requirements of Patients with Chronic Kidney Disease?. Nutrients, 2021, 13, 83.	4.1	27
24	Ultraâ€hyperâ€fractionated radiotherapy for highâ€grade gliomas. Journal of Neuroscience Research, 2021, 99, 3182-3203.	2.9	6
25	Two-Day ABPM-Derived Indices and Mortality in Hemodialysis Patients. American Journal of Hypertension, 2020, 33, 165-174.	2.0	1
26	Neutrophil Extracellular Traps Profiles in Patients with Incident Systemic Lupus Erythematosus and Lupus Nephritis. Journal of Rheumatology, 2020, 47, 377-386.	2.0	77
27	Ten-Year Efficacy and Safety of Once-Daily Tacrolimus in Kidney Transplant: A Prospective Cohort Study. Transplantation Proceedings, 2020, 52, 3112-3117.	0.6	3
28	Mechanisms Regulating Muscle Protein Synthesis in CKD. Journal of the American Society of Nephrology: JASN, 2020, 31, 2573-2587.	6.1	19
29	Successful kidney transplantation after COVIDâ€19. Transplant International, 2020, 33, 1333-1334.	1.6	20
30	New Treatment Options for Hyperkalemia in Patients with Chronic Kidney Disease. Journal of Clinical Medicine, 2020, 9, 2337.	2.4	13
31	Nutritional management of kidney diseases: an unmet need in patient care. Journal of Nephrology, 2020, 33, 895-897.	2.0	10
32	Clinical characteristics, management and in-hospital mortality of patients with coronavirus disease 2019 in Genoa, Italy. Clinical Microbiology and Infection, 2020, 26, 1537-1544.	6.0	84
33	P0915PROTEIN ENERGY WASTING IS ASSOCIATED WITH A DECLINE IN MUSCLE PROTEIN SYNTHESIS IN CKD PATIENTS. Nephrology Dialysis Transplantation, 2020, 35, .	0.7	0
34	Increased serum uric acid levels are associated to renal arteriolopathy and predict poor outcome in IgA nephropathy. Nutrition, Metabolism and Cardiovascular Diseases, 2020, 30, 2343-2350.	2.6	20
35	P1596CHANGES IN INFLAMMATORY MARKERS AND NUTRITIONAL PARAMETERS IN PATIENTS RECEIVING INCREMENTAL HEMODIALYSIS:A REAL LIFE STUDY. Nephrology Dialysis Transplantation, 2020, 35, .	0.7	0
36	Long-term blood pressure behavior and progression to end-stage renal disease in patients with immunoglobulin A nephropathy: a single-center observational study in Italy. Journal of Hypertension, 2020, 38, 925-935.	0.5	7

#	Article	IF	CITATIONS
37	Management of <scp>COVID</scp> â€19 in hemodialysis patients: The Genoa experience. Hemodialysis International, 2020, 24, 423-427.	0.9	15
38	Muscle protein turnover and low-protein diets in patients with chronic kidney disease. Nephrology Dialysis Transplantation, 2020, 35, 741-751.	0.7	18
39	Myostatin in the Arterial Wall of Patients with End-Stage Renal Disease. Journal of Atherosclerosis and Thrombosis, 2020, 27, 1039-1052.	2.0	8
40	Fructose and Uric Acid: Major Mediators of Cardiovascular Disease Risk Starting at Pediatric Age. International Journal of Molecular Sciences, 2020, 21, 4479.	4.1	31
41	Enhanced myostatin expression and signalling promote tubulointerstitial inflammation in diabetic nephropathy. Scientific Reports, 2020, 10, 6343.	3.3	14
42	Nutritional Challenges in Pregnant Women with Renal Diseases: Relevance to Fetal Outcomes. Nutrients, 2020, 12, 873.	4.1	6
43	Cellular Senescence Is Associated with Faster Progression of Focal Segmental Glomerulosclerosis. American Journal of Nephrology, 2020, 51, 950-958.	3.1	7
44	Failure to removede novodonor-specific HLA antibodies is influenced by antibody properties and identifies kidney recipients with late antibody-mediated rejection destined to graft loss - a retrospective study. Transplant International, 2019, 32, 38-48.	1.6	11
45	FO052MYOSTATIN PROMOTES TUBULAR INFLAMMATION IN DIABETIC NEPHROPATHY. Nephrology Dialysis Transplantation, 2019, 34, .	0.7	0
46	Signal regulatory protein alpha initiates cachexia through muscle to adipose tissue crosstalk. Journal of Cachexia, Sarcopenia and Muscle, 2019, 10, 1210-1227.	7.3	20
47	SP379BIOACTIVE MOLECULES EXTRACTED FROM OLIVE POMACE PROTECT SKELETAL MUSCLE CELLS FROM UREMIC INFLAMMATION. Nephrology Dialysis Transplantation, 2019, 34, .	0.7	1
48	The Organ Handling of Soluble Klotho in Humans. Kidney and Blood Pressure Research, 2019, 44, 715-726.	2.0	11
49	Efficacy and Safety of Belimumab and Azathioprine for Maintenance of Remission in Antineutrophil Cytoplasmic Antibody–Associated Vasculitis: A Randomized Controlled Study. Arthritis and Rheumatology, 2019, 71, 952-963.	5.6	82
50	Indoxyl Sulfate Induces Renal Fibroblast Activation through a Targetable Heat Shock Protein 90-Dependent Pathway. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-11.	4.0	34
51	Early interstitial macrophage infiltration with mild dysfunction is associated with subsequent kidney graft loss. Clinical Transplantation, 2019, 33, e13579.	1.6	4
52	Emerging role of myostatin and its inhibition in the setting of chronic kidney disease. Kidney International, 2019, 95, 506-517.	5.2	55
53	Uric acid and angiotensin II additively promote inflammation and oxidative stress in human proximal tubule cells by activation of tollâ€like receptor 4. Journal of Cellular Physiology, 2019, 234, 10868-10876.	4.1	51
54	Testosterone deficiency, frailty and muscle wasting in CKD: a converging paradigm?. Nephrology Dialysis Transplantation, 2019, 34, 723-726.	0.7	3

#	Article	IF	CITATIONS
55	Activin/myostatin receptor signaling and vascular calcifications in chronic kidney disease: A "liaison dangereuse�. Kidney Research and Clinical Practice, 2019, 38, 407-410.	2.2	2
56	Immunohistochemical Staining of TLR4 in Human Skeletal Muscle Samples. Bio-protocol, 2019, 9, e3144.	0.4	3
57	Wasting and Cachexia in Chronic Kidney Disease. , 2019, , 349-374.		0
58	Soluble Toll-like Receptor 4: A New Player inÂSubclinical Inflammation and Malnutrition in Hemodialysis Patients. , 2018, 28, 259-264.		7
59	Effects of Low-Protein, and Supplemented Very Low–Protein Diets, on Muscle Protein Turnover in Patients With CKD. Kidney International Reports, 2018, 3, 701-710.	0.8	30
60	The contribution of muscle, kidney, and splanchnic tissues to leucine transamination in humans. Canadian Journal of Physiology and Pharmacology, 2018, 96, 382-387.	1.4	5
61	Eating During Hemodialysis Treatment: AÂConsensus Statement From the International Society of Renal Nutrition and Metabolism. , 2018, 28, 4-12.		75
62	FP022THE REGULATION OF ADIPONECTIN AND ITS RECEPTOR IN SKELETAL MUSCLE AND VISCERAL FAT IN PATIENTS WITH CKD: A ROLE IN MAINTAINING THE ANTI-INFLAMMATORY HOMEOSTASIS. Nephrology Dialysis Transplantation, 2018, 33, i56-i56.	0.7	0
63	Nutritional treatment of advanced CKD: twenty consensus statements. Journal of Nephrology, 2018, 31, 457-473.	2.0	95
64	Comparative Safety of Originator and Biosimilar Epoetin Alfa Drugs: An Observational Prospective Multicenter Study. BioDrugs, 2018, 32, 367-375.	4.6	9
65	FP304WASTING IN PATIENTS WITH CKD AND DIABETES: THE ROLE OF MYOSTATIN. Nephrology Dialysis Transplantation, 2018, 33, i134-i134.	0.7	0
66	Peripheral artery disease and blood pressure profile abnormalities in hemodialysis patients. Journal of Nephrology, 2017, 30, 427-433.	2.0	8
67	Myostatin mediates abdominal aortic atherosclerosis progression by inducing vascular smooth muscle cell dysfunction and monocyte recruitment. Scientific Reports, 2017, 7, 46362.	3.3	39
68	Tollâ€like receptor 4 signalling mediates inflammation in skeletal muscle of patients with chronic kidney disease. Journal of Cachexia, Sarcopenia and Muscle, 2017, 8, 131-144.	7.3	62
69	The nuclear phosphatase SCP4 regulates FoxOÂtranscription factors during muscle wastingÂin chronic kidney disease. Kidney International, 2017, 92, 336-348.	5.2	16
70	Toll-like receptor-4 signaling mediates inflammation and tissue injury in diabetic nephropathy. Journal of Nephrology, 2017, 30, 719-727.	2.0	66
71	Interorgan handling of fibroblast growth factor-23 in humans. American Journal of Physiology - Renal Physiology, 2017, 312, F254-F258.	2.7	4
72	Kidney Intragraft Homing of De Novo Donor-Specific HLA Antibodies Is an Essential Step of Antibody-Mediated Damage but Not Per Se Predictive of Graft Loss. American Journal of Transplantation, 2017, 17, 692-702.	4.7	23

#	Article	IF	CITATIONS
73	De Novo Donor-Specific HLA Antibodies Developing Early or Late after Transplant Are Associated with the Same Risk of Graft Damage and Loss in Nonsensitized Kidney Recipients. Journal of Immunology Research, 2017, 2017, 1-9.	2.2	19
74	Modulation of Myostatin/Hepatocyte Growth Factor Balance by Different Hemodialysis Modalities. BioMed Research International, 2017, 2017, 1-5.	1.9	12
75	Acquisition of C3d-Binding Activity by De Novo Donor-Specific HLA Antibodies Correlates With Graft Loss in Nonsensitized Pediatric Kidney Recipients. American Journal of Transplantation, 2016, 16, 2106-2116.	4.7	85
76	Low-protein diets for chronic kidney disease patients: the Italian experience. BMC Nephrology, 2016, 17, 77.	1.8	76
77	Studying Muscle Protein Turnover in CKD. Clinical Journal of the American Society of Nephrology: CJASN, 2016, 11, 1131-1132.	4.5	3
78	Regression of asymptomatic cardiomyopathy and clinical outcome of renal transplant recipients: a long-term prospective cohort study. Nephrology Dialysis Transplantation, 2016, 31, 1168-1174.	0.7	35
79	FP776EFFECTS OF DIALYSIS MODALITY ON MYOSTATIN/HGF BALANCE IN REGULAR HD PATIENTS. Nephrology Dialysis Transplantation, 2015, 30, iii337-iii337.	0.7	0
80	Autoimmune central diabetes insipidus in a patient with ureaplasma urealyticum infection and review on new triggers of immune response. Archives of Endocrinology and Metabolism, 2015, 59, 554-558.	0.6	4
81	Gene expression in highly sensitized dialysis patients waiting for a kidney transplant: A real-time PCR analysis. Transplant Immunology, 2015, 33, 166-167.	1.2	1
82	Insulin sensitivity of muscle protein metabolism is altered in patients with chronic kidney disease and metabolic acidosis. Kidney International, 2015, 88, 1419-1426.	5.2	48
83	Uric Acid Promotes Apoptosis in Human Proximal Tubule Cells by Oxidative Stress and the Activation of NADPH Oxidase NOX 4. PLoS ONE, 2014, 9, e115210.	2.5	101
84	Enhanced glomerular Toll-like receptor 4 expression and signaling in patients with type 2 diabetic nephropathy and microalbuminuria. Kidney International, 2014, 86, 1229-1243.	5.2	77
85	1,25-Dihydroxy vitamin D and coronary microvascular function. European Journal of Nuclear Medicine and Molecular Imaging, 2013, 40, 280-289.	6.4	9
86	Stat3 Activation Links a C/EBPδ to Myostatin Pathway to Stimulate Loss of Muscle Mass. Cell Metabolism, 2013, 18, 368-379.	16.2	211
87	Effect of protein-energy wasting (PEW) on muscle protein metabolism and oxygen consumption in patients with end-stage renal disease (ESRD). Nutrition, Metabolism and Cardiovascular Diseases, 2013, 23, S54.	2.6	0
88	Effects of peritoneal dialysis on protein metabolism. Nutrition, Metabolism and Cardiovascular Diseases, 2013, 23, S25-S30.	2.6	6
89	What can we learn from a statistically inconclusive trial? Consensus conference on the EVOLVE study results. Giornale Italiano Di Nefrologia: Organo Ufficiale Della Società Italiana Di Nefrologia, 2013, 30, .	0.3	5
90	Effect of kidney failure and hemodialysis on protein and amino acid metabolism. Current Opinion in Clinical Nutrition and Metabolic Care, 2012, 15, 78-84.	2.5	18

#	Article	IF	CITATIONS
91	Posttransplant De Novo Donor-Specific HLA Antibodies Identify Pediatric Kidney Recipients at Risk for Late Antibody-Mediated Rejection. American Journal of Transplantation, 2012, 12, 3355-3362.	4.7	142
92	Lysine triggers apoptosis through a NADPH oxidaseâ€dependent mechanism in human renal tubular cells. Journal of Inherited Metabolic Disease, 2012, 35, 1011-1019.	3.6	17
93	Direct characterization of target podocyte antigens and auto-antibodies in human membranous glomerulonephritis: Alfa-enolase and borderline antigens. Journal of Proteomics, 2011, 74, 2008-2017.	2.4	101
94	The human kidney as a regulator of body cytokine homeostasis. Journal of Biological Research (Italy), 2011, 84, .	0.1	0
95	Evaluation of Metabolic Acidosis in Patients With a Kidney Graft: Comparison of the Bicarbonate-Based and Strong Ion–Based Methods. Transplantation Proceedings, 2011, 43, 1055-1062.	0.6	7
96	Protein-Energy Wasting and Mortality in Chronic Kidney Disease. International Journal of Environmental Research and Public Health, 2011, 8, 1631-1654.	2.6	83
97	Apoptosis and myostatin mRNA are upregulated in the skeletal muscle of patients with chronic kidney disease. Kidney International, 2011, 79, 773-782.	5.2	75
98	Amino acid and protein metabolism in the human kidney and in patients with chronic kidney disease. Clinical Nutrition, 2010, 29, 424-433.	5.0	90
99	Effects of Chronic Metabolic Acidosis on Splanchnic Protein Turnover and Oxygen Consumption in Human Beings. Gastroenterology, 2010, 138, 1557-1565.	1.3	8
100	The kidney is the major site of S-adenosylhomocysteine disposal in humans. Kidney International, 2009, 76, 293-296.	5.2	47
101	Mechanisms of renal ammonia production and protein turnover. Metabolic Brain Disease, 2009, 24, 159-167.	2.9	11
102	Androgen-mediated apoptosis of kidney tubule cells: Role of c-Jun amino terminal kinase. Biochemical and Biophysical Research Communications, 2009, 387, 531-536.	2.1	40
103	Elevated serum levels of S-adenosylhomocysteine, but not homocysteine, are associated with cardiovascular disease in stage 5 chronic kidney disease patients. Clinica Chimica Acta, 2008, 395, 106-110.	1.1	58
104	Accelerated senescence in the kidneys of patients with type 2 diabetic nephropathy. American Journal of Physiology - Renal Physiology, 2008, 295, F1563-F1573.	2.7	219
105	Effects of uremia and inflammation on growth hormone resistance in patients with chronic kidney diseases. Kidney International, 2008, 74, 937-945.	5.2	27
106	Response to â€~Renal microvascular and tubular injuries in type II diabetic nephropathy'. Kidney International, 2008, 74, 390-391.	5.2	1
107	Kidney and splanchnic handling of Interleukin-6 in humans. Cytokine, 2007, 37, 51-54.	3.2	18
108	Apoptosis in the kidneys of patients with type II diabetic nephropathy. Kidney International, 2007, 72, 1262-1272.	5.2	154

#	Article	IF	CITATIONS
109	Efficacy and Safety of a Very-Low-Protein Diet When Postponing Dialysis in the Elderly: A Prospective Randomized Multicenter Controlled Study. American Journal of Kidney Diseases, 2007, 49, 569-580.	1.9	224
110	Causes of Hyperhomocysteinemia in Patients With Chronic Kidney Diseases. Seminars in Nephrology, 2006, 26, 3-7.	1.6	26
111	Peripheral tissue release of interleukin-6 in patients with chronic kidney diseases: Effects of end-stage renal disease and microinflammatory state. Kidney International, 2006, 70, 384-390.	5.2	45
112	Central role of PKCδ in glycoxidation-dependent apoptosis of human neurons. Free Radical Biology and Medicine, 2005, 38, 846-856.	2.9	51
113	Insulin in methionine and homocysteine kinetics in healthy humans: plasma vs. intracellular models. American Journal of Physiology - Endocrinology and Metabolism, 2005, 288, E1270-E1276.	3.5	26
114	Effects of Insulin on Methionine and Homocysteine Kinetics in Type 2 Diabetes With Nephropathy. Diabetes, 2005, 54, 2968-2976.	0.6	73
115	Oxidative Stress Mediates Apoptotic Changes Induced by Hyperglycemia in Human Tubular Kidney Cells. Journal of the American Society of Nephrology: JASN, 2004, 15, 85S-87.	6.1	77
116	Kidney Protein Dynamics and Ammoniagenesis in Humans with Chronic Metabolic Acidosis. Journal of the American Society of Nephrology: JASN, 2004, 15, 1606-1615.	6.1	36
117	Testosterone promotes apoptotic damage in human renal tubular cells. Kidney International, 2004, 65, 1252-1261.	5.2	104
118	Leptin as a Uremic Toxin Interferes with Neutrophil Chemotaxis. Journal of the American Society of Nephrology: JASN, 2004, 15, 2366-2372.	6.1	78
119	Role of PKC-δactivity in glutathione-depleted neuroblastoma cells. Free Radical Biology and Medicine, 2003, 35, 504-516.	2.9	49
120	A novel role of protein kinase C-δ in cell signaling triggered by glutathione depletion. Biochemical Pharmacology, 2003, 66, 1521-1526.	4.4	28
121	Malnutrition in Peritoneal Dialysis Patients: Causes and Diagnosis. , 2003, 140, 112-121.		3
122	Interorgan exchange of aminothiols in humans. American Journal of Physiology - Endocrinology and Metabolism, 2003, 284, E757-E763.	3.5	35
123	Taurine Prevents Apoptosis Induced by High Ambient Glucose in Human Tubule Renal Cells. Journal of Investigative Medicine, 2002, 50, 443-451.	1.6	87
124	Taurine Prevents Apoptosis Induced by High Ambient Glucose in Human Tubule Renal Cells. Journal of Investigative Medicine, 2002, 50, 443-451.	1.6	2
125	Amino Acid Loss with Polyethersulfone. , 2002, 138, 59-67.		6
126	The metabolic conversion of phenylalanine into tyrosine in the human kidney: Does it have nutritional implications in renal patients?. , 2002, 12, 8-16.		19

#	Article	IF	CITATIONS
127	Role of blood cells in leucine kinetics across the human kidney. American Journal of Physiology - Renal Physiology, 2002, 283, F1430-F1437.	2.7	7
128	Determinants of outcome in ANCA-associated glomerulonephritis: A prospective clinico-histopathological analysis of 96 patients. Kidney International, 2002, 62, 1732-1742.	5.2	198
129	Taurine Prevents Apoptosis Induced by High Ambient Glucose in Human Tubule Renal Cells. Journal of Investigative Medicine, 2002, 50, 443.	1.6	36
130	Apoptosis Induced by Serum Withdrawal in Human Mesangial Cells. Nephron Experimental Nephrology, 2001, 9, 366-371.	2.2	14
131	Plasma protein synthesis in patients with low-grade nephrotic proteinuria. American Journal of Physiology - Endocrinology and Metabolism, 2001, 280, E591-E597.	3.5	19
132	Acute Effects of Peritoneal Dialysis with Dialysates Containing Dextrose or Dextrose and Amino Acids on Muscle Protein Turnover in Patients with Chronic Renal Failure. Journal of the American Society of Nephrology: JASN, 2001, 12, 557-567.	6.1	42
133	Interorgan amino acid exchange. Current Opinion in Clinical Nutrition and Metabolic Care, 2000, 3, 51-57.	2.5	26
134	Effects of Growth Hormone on Leptin Metabolism and Energy Expenditure in Hemodialysis Patients with Protein-Calorie Malnutrition. Journal of the American Society of Nephrology: JASN, 2000, 11, 2106-2113.	6.1	13
135	Randomized, double-blind, placebo-controlled study of arginine supplementation in chronic renal failure. Kidney International, 1999, 56, 674-684.	5.2	36
136	Phenylalanine hydroxylation across the kidney in humans Rapid Communication. Kidney International, 1999, 56, 2168-2172.	5.2	16
137	Muscle amino acid metabolism and the control of muscle protein turnover in patients with chronic renal failure. Nutrition, 1999, 15, 145-155.	2.4	31
138	Phenylalanine hydroxylation across the kidney in humans. Kidney International, 1999, 56, 2168.	5.2	28
139	Amino acid metabolism, substrate availability and the control of protein dynamics in the human kidney. Journal of Nephrology, 1999, 12, 203-11.	2.0	7
140	Inter-organ Leptin Exchange in Humans. Biochemical and Biophysical Research Communications, 1998, 247, 504-509.	2.1	39
141	Noramidopyrine (Metamizol) and acute interstitial nephritis. Nephrology Dialysis Transplantation, 1998, 13, 2110-2112.	0.7	8
142	Effects of recombinant human growth hormone on muscle protein turnover in malnourished hemodialysis patients Journal of Clinical Investigation, 1997, 99, 97-105.	8.2	107
143	Renal Metabolism of C-Peptide in Patients with Early Insulin-Dependent Diabetes mellitus. Nephron, 1996, 72, 395-401.	1.8	9
144	Long-Term Response of Renal Function in Crescentic Membranous Glomerulonephritis after Plasma Exchange and Immunosuppressive Therapy. Nephron, 1996, 73, 340-341.	0.6	0

#	Article	IF	CITATIONS
145	Kidney, splanchnic, and leg protein turnover in humans. Insight from leucine and phenylalanine kinetics Journal of Clinical Investigation, 1996, 98, 1481-1492.	8.2	88
146	Disposal of exogenous amino acids by muscle in patients with chronic renal failure. American Journal of Clinical Nutrition, 1995, 62, 136-142.	4.7	17
147	Postanaesthetic myoglobinuric renal failure: an isolated expression of malignant hyperthermia. Nephrology Dialysis Transplantation, 1994, 9, 567-568.	0.7	3
148	Skeletal muscle protein synthesis and degradation in patients with chronic renal failure. Kidney International, 1994, 45, 1432-1439.	5.2	126
149	Role of haematological, pulmonary and renal complications in the long-term prognosis of patients with lysinuric protein intolerance. European Journal of Pediatrics, 1993, 152, 437-440.	2.7	59
150	Effects of a Protein Meal on Blood Amino Acid Profile in Patients with Chronic Renal Failure. Nephron, 1993, 64, 216-225.	1.8	30
151	Muscle Amino Acid and Protein Metabolism in Chronic Renal Failure. Contributions To Nephrology, 1992, 98, 1-10.	1.1	4
152	Renal Ammoniagenesis in Man with Chronic Potassium Depletion. Contributions To Nephrology, 1991, 92, 114-118.	1.1	0
153	Renal metabolism of amino acids in early insulin-dependent diabetes mellitus. The Journal of Diabetic Complications, 1991, 5, 101-103.	0.2	0
154	Short- and Long-Term Effects of Methylprednisolone Pulses and Oral Cyclophosphamide in Renal Micropolyarteritis. Contributions To Nephrology, 1991, 94, 144-150.	1.1	0
155	Renal ammoniagenesis in humans with chronic potassium depletion. Kidney International, 1991, 40, 772-778.	5.2	39
156	Reversed-phase high-performance liquid chromatographic analysis of branched-chain keto acid hydrazone derivatives: optimization of techniques and application to branched-chain keto acid balance studies across the forearm. Biomedical Applications, 1991, 572, 11-23.	1.7	5
157	Effects of a new amino acid supplement on blood AA pools in patients with chronic renal failure. Amino Acids, 1991, 1, 319-329.	2.7	7
158	Determinants of the Partition of Renal Ammonia Production between Urine and Venous Blood in Man with Metabolic Acid-Base Disturbances. Contributions To Nephrology, 1991, 92, 109-113.	1.1	2
159	Primary hyperoxaluria: a report of a case. European Journal of Radiology, 1990, 10, 208-210.	2.6	0
160	Abnormalities in Amino Acid Metabolism in Chronic Renal Failure. Contributions To Nephrology, 1990, 81, 169-180.	1.1	1
161	Amino Acid Imbalance in Patients with Chronic Renal Failure. Contributions To Nephrology, 1989, 75, 185-193.	1.1	10
162	Multiple venous sampling for catecholamine assay in the diagnosis of malignant pheochromocytoma. Journal of Endocrinological Investigation, 1989, 12, 647-649.	3.3	4

#	Article	IF	CITATIONS
163	Glyoxylic Acid in Ethylene Glycol Poisoning. Nephron, 1988, 48, 248-249.	1.8	8
164	Splanchnic exchange of amino acids after amino acid ingestion in patients with chronic renal insufficiency. American Journal of Clinical Nutrition, 1988, 48, 72-83.	4.7	51
165	Renal Metabolism of C-Peptide in Man*. Journal of Clinical Endocrinology and Metabolism, 1987, 65, 494-498.	3.6	67
166	Circadian monitoring of gastric juice mutagenicity. Mutagenesis, 1987, 2, 115-119.	2.6	7
167	Abnormalities in Amino Acid Metabolism in Patients with Chronic Renal Failure. Contributions To Nephrology, 1987, 55, 1-10.	1.1	1
168	Abnormalities in Amino Acid Metabolism in Patients with Chronic Renal Failure. Contributions To Nephrology, 1987, 55, 11-19.	1.1	2
169	Effect of amino acid ingestion on blood amino acid profile in patients with chronic renal failure. American Journal of Clinical Nutrition, 1987, 46, 949-954.	4.7	32
170	Effects of Hemodialysis on Guanidinopropionic Acid Metabolism. Nephron, 1986, 42, 295-297.	1.8	5
171	Comparative effects of nonionic (iopamidol) and ionic (sodium and meglumine diatrizoate) contrast media for urography on urinary excretion of water and solutes. Urologic Radiology, 1986, 8, 199-203.	0.2	2
172	Leg Metabolism of Amino Acids and Ammonia in Patients with Chronic Renal Failure. Clinical Science, 1985, 69, 143-151.	4.3	36
173	Is amino acid imbalance harmful to patients in chronic renal failure?. Kidney International, Supplement, 1985, 17, S79-83.	0.1	2
174	Glucose interorgan exchange in chronic renal failure. Kidney International, Supplement, 1983, 16, S115-20.	0.1	2
175	Branched-chain amino acid metabolism in chronic renal failure. Kidney International, Supplement, 1983, 16, S17-22.	0.1	7
176	Renal ammoniagenesis in an early stage of metabolic acidosis in man Journal of Clinical Investigation, 1982, 69, 240-250.	8.2	61
177	Brain metabolism of amino acids and ammonia in patients with chronic renal insufficiency. Kidney International, 1981, 20, 505-510.	5.2	50
178	Amino acid metabolism and the liver in renal failure. American Journal of Clinical Nutrition, 1980, 33, 1354-1362.	4.7	57
179	Renal metabolism of amino acids and ammonia in subjects with normal renal function and in patients with chronic renal insufficiency Journal of Clinical Investigation, 1980, 65, 1162-1173.	8.2	317
180	Study of bioassayable somatomedin on renal artery and vein. Journal of Endocrinological Investigation, 1979, 2, 305-306.	3.3	0