
Edmund Chun Ming Tse

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6851696/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nucleation and growth in solution synthesis of nanostructures – From fundamentals to advanced applications. Progress in Materials Science, 2022, 123, 100821.	32.8	55
2	Bioinspired NiFe–gallate metal–organic frameworks for highly efficient oxygen evolution electrocatalysis. Journal of Materials Chemistry A, 2022, 10, 7013-7019.	10.3	9
3	Enhanced Nitrite Electrovalorization to Ammonia by a NiFe Layered Double Hydroxide. European Journal of Inorganic Chemistry, 2022, 2022, .	2.0	4
4	Proton Removal Kinetics That Govern the Hydrogen Peroxide Oxidation Activity of Heterogeneous Bioinorganic Platforms. Inorganic Chemistry, 2021, 60, 6900-6910.	4.0	6
5	Steering Electron–Hole Migration Pathways Using Oxygen Vacancies in Tungsten Oxides to Enhance Their Photocatalytic Oxygen Evolution Performance. Angewandte Chemie - International Edition, 2021, 60, 8236-8242.	13.8	249
6	Steering Electron–Hole Migration Pathways Using Oxygen Vacancies in Tungsten Oxides to Enhance Their Photocatalytic Oxygen Evolution Performance. Angewandte Chemie, 2021, 133, 8317-8323.	2.0	6
7	Ferroceneâ€Based Metal–Organic Framework Nanosheets as a Robust Oxygen Evolution Catalyst. Angewandte Chemie - International Edition, 2021, 60, 12770-12774.	13.8	111
8	Ferroceneâ€Based Metal–Organic Framework Nanosheets as a Robust Oxygen Evolution Catalyst. Angewandte Chemie, 2021, 133, 12880-12884.	2.0	4
9	Bioinorganic Platforms for Sensing, Biomimicry, and Energy Catalysis. Chemistry Letters, 2021, 50, 974-986.	1.3	2
10	A. Sigel, E. Freisinger & R. K. O. Sigel (Eds.), M. E. Sosa Torres & P. M. H. Kroneck (volume Eds.): Transition Metals and Sulfur – A Strong Relationship for Life. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2021, 76, 257-259.	1.4	0
11	Extracellular DNA Promotes Efficient Extracellular Electron Transfer by Pyocyanin in Pseudomonas aeruginosa Biofilms. Cell, 2020, 182, 919-932.e19.	28.9	166
12	Nitrile-Facilitated Proton Transfer for Enhanced Oxygen Reduction by Hybrid Electrocatalysts. ACS Catalysis, 2020, 10, 13149-13155.	11.2	8
13	Physical and electrochemical characterization of a Cu-based oxygen reduction electrocatalyst inside and outside a lipid membrane with controlled proton transfer kinetics. Electrochimica Acta, 2019, 320, 134611.	5.2	11
14	A Scalable Laser-Assisted Method to Produce Active and Robust Graphene-Supported Nanoparticle Electrocatalysts. Chemistry of Materials, 2019, 31, 8230-8238.	6.7	26
15	A new chemical approach for proximity labelling of chromatin-associated RNAs and proteins with visible light irradiation. Chemical Communications, 2019, 55, 12340-12343.	4.1	15
16	Effective Distance for DNA-Mediated Charge Transport between Repair Proteins. ACS Central Science, 2019, 5, 65-72.	11.3	35
17	A Compass at Weak Magnetic Fields Using Thymine Dimer Repair. ACS Central Science, 2018, 4, 405-412.	11.3	18
18	Probing Phenazine Electron Transfer and Retention in Pseudomonas Aeruginosa Biofilms. Biophysical Journal, 2018, 114, 28a.	0.5	3

2

#	Article	IF	CITATIONS
19	Controlling Proton and Electron Transfer Rates to Enhance the Activity of an Oxygen Reduction Electrocatalyst. Angewandte Chemie, 2018, 130, 13668-13671.	2.0	2
20	Controlling Proton and Electron Transfer Rates to Enhance the Activity of an Oxygen Reduction Electrocatalyst. Angewandte Chemie - International Edition, 2018, 57, 13480-13483.	13.8	31
21	Sensing DNA through DNA Charge Transport. ACS Chemical Biology, 2018, 13, 1799-1809.	3.4	55
22	Proton transfer dynamics dictate quinone speciation at lipid-modified electrodes. Physical Chemistry Chemical Physics, 2017, 19, 7086-7093.	2.8	12
23	The Oxidation State of [4Fe4S] Clusters Modulates the DNA-Binding Affinity of DNA Repair Proteins. Journal of the American Chemical Society, 2017, 139, 12784-12792.	13.7	42
24	Proton transfer dynamics control the mechanismÂof O2 reduction by a non-precious metalÂelectrocatalyst. Nature Materials, 2016, 15, 754-759.	27.5	126
25	Elucidating Proton Involvement in the Rate-Determining Step for Pt/Pd-Based and Non-Precious-Metal Oxygen Reduction Reaction Catalysts Using the Kinetic Isotope Effect. Journal of Physical Chemistry Letters, 2016, 7, 3542-3547.	4.6	50
26	Identification of carbon-encapsulated iron nanoparticles as active species in non-precious metal oxygen reduction catalysts. Nature Communications, 2016, 7, 12582.	12.8	261
27	The Flip-Flop Diffusion Mechanism across Lipids in a Hybrid Bilayer Membrane. Biophysical Journal, 2016, 110, 2451-2462.	0.5	23
28	Observation of an Inverse Kinetic Isotope Effect in Oxygen Evolution Electrochemistry. ACS Catalysis, 2016, 6, 5706-5714.	11.2	73
29	Effect of Temperature and Pressure on the Kinetics of the Oxygen Reduction Reaction. Journal of Physical Chemistry A, 2015, 119, 1246-1255.	2.5	39
30	Anion Transport through Lipids in a Hybrid Bilayer Membrane. Analytical Chemistry, 2015, 87, 2403-2409.	6.5	22
31	Photoresponsive Molecular Switch for Regulating Transmembrane Proton-Transfer Kinetics. Journal of the American Chemical Society, 2015, 137, 14059-14062.	13.7	29
32	Non-Precious Metal Catalysts for the Oxygen Reduction Reaction. ECS Meeting Abstracts, 2015, , .	0.0	0
33	Hybrid Bilayer Membrane As a Versatile Electrochemical Platform to Modulate Transport Kinetics of Small Molecules Across a Lipid Monolayer. ECS Meeting Abstracts, 2015, , .	0.0	0
34	Proton switch for modulating oxygen reduction by a copper electrocatalyst embedded in a hybrid bilayer membrane. Nature Materials, 2014, 13, 619-623.	27.5	51
35	Multicopper Models for the Laccase Active Site: Effect of Nuclearity on Electrocatalytic Oxygen Reduction. Inorganic Chemistry, 2014, 53, 8505-8516.	4.0	85
36	Cu complexes that catalyze the oxygen reduction reaction. Coordination Chemistry Reviews, 2013, 257, 130-139.	18.8	178

#	Article	IF	CITATIONS
37	Ligand Effects on the Overpotential for Dioxygen Reduction by Tris(2-pyridylmethyl)amine Derivatives. Inorganic Chemistry, 2013, 52, 628-634.	4.0	70