List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6851365/publications.pdf Version: 2024-02-01

GUICENLL

#	Article	IF	CITATIONS
1	Asymmetric Catalytic Assembly of Triple olumned and Multilayered Chiral Folding Polymers Showing Aggregationâ€Induced Emission (AIE). Chemistry - A European Journal, 2022, 28, e202200183.	3.3	4
2	Asymmetric Catalytic Assembly of Triple olumned and Multilayered Chiral Folding Polymers Showing Aggregationâ€Induced Emission (AIE). Chemistry - A European Journal, 2022, 28, .	3.3	10
3	Alkaline soluble 1,3,5,7-tetrahydroxyanthraquinone with high reversibility as anolyte for aqueous redox flow battery. Journal of Power Sources, 2022, 524, 231001.	7.8	20
4	Multilayer 3D Chiral Folding Polymers and Their Asymmetric Catalytic Assembly. Research, 2022, 2022, 9847949.	5.7	8
5	Central-to-Folding Chirality Control: Asymmetric Synthesis of Multilayer 3D Targets With Electron-Deficient Bridges. Frontiers in Chemistry, 2022, 10, 860398.	3.6	6
6	From Center-to-Multilayer Chirality: Asymmetric Synthesis of Multilayer Targets with Electron-Rich Bridges. Journal of Organic Chemistry, 2022, 87, 5976-5986.	3.2	7
7	Catalytic Enantioselective Construction of 6â€4 <scp>Ringâ€Junction Allâ€Carbon</scp> Stereocenters and Mechanistic Insights. Chinese Journal of Chemistry, 2022, 40, 1767-1776.	4.9	15
8	Catalytic Decarboxylative Câ^'N Formation to Generate Alkyl, Alkenyl, and Aryl Amines. Angewandte Chemie - International Edition, 2021, 60, 1845-1852.	13.8	21
9	Catalytic Decarboxylative Câ^'N Formation to Generate Alkyl, Alkenyl, and Aryl Amines. Angewandte Chemie, 2021, 133, 1873-1880.	2.0	3
10	Nanoparticles target intimal macrophages in atherosclerotic lesions. Nanomedicine: Nanotechnology, Biology, and Medicine, 2021, 32, 102346.	3.3	7
11	Electrochemical Arylation of Aldehydes, Ketones, and Alcohols: from Cathodic Reduction to Convergent Paired Electrolysis. Angewandte Chemie - International Edition, 2021, 60, 7275-7282.	13.8	100
12	Triple-Columned and Multiple-Layered 3D Polymers: Design, Synthesis, Aggregation-Induced Emission (AIE), and Computational Study. Research, 2021, 2021, 3565791.	5.7	10
13	Electrochemical Arylation of Aldehydes, Ketones, and Alcohols: from Cathodic Reduction to Convergent Paired Electrolysis. Angewandte Chemie, 2021, 133, 7351-7358.	2.0	17
14	Anthracene–Triphenylamine-Based Platinum(II) Metallacages as Synthetic Light-Harvesting Assembly. Journal of the American Chemical Society, 2021, 143, 2908-2919.	13.7	76
15	Copper-Catalyzed Asymmetric Borylacylation of Styrene and Indene Derivatives. Journal of Organic Chemistry, 2021, 86, 4616-4624.	3.2	10
16	Electrochemical Tri―and Difluoromethylationâ€Triggered Cyclization Accompanied by the Oxidative Cleavage of Indole Derivatives. Chemistry - A European Journal, 2021, 27, 6522-6528.	3.3	19
17	Enantio- and Regioselective CuH-Catalyzed Conjugate Reduction of Yne–Allenones. Organic Letters, 2021, 23, 3828-3833.	4.6	10
18	Asymmetric Catalytic Approach to Multilayer 3D Chirality. Chemistry - A European Journal, 2021, 27, 8013-8020.	3.3	16

#	Article	IF	CITATIONS
19	Asymmetric Catalytic Approach to Multilayer 3D Chirality. Chemistry - A European Journal, 2021, 27, 7977-7977.	3.3	4
20	Enhanced energy density and wide potential window for K incorporated MnO2@carbon cloth supercapacitor. Chemical Engineering Journal, 2021, 415, 128967.	12.7	46
21	Nâ€Atom Deletion in Nitrogen Heterocycles. Angewandte Chemie - International Edition, 2021, 60, 20678-20683.	13.8	43
22	Nâ€Atom Deletion in Nitrogen Heterocycles. Angewandte Chemie, 2021, 133, 20846-20851.	2.0	6
23	Metalâ€toâ€Ligand Ratioâ€Dependent Chemodivergent Asymmetric Synthesis. Angewandte Chemie, 2021, 133, 23074.	2.0	0
24	Regio- and Diastereoselective Vicinal Aminobromination of Electron Deficient Olefins via Phosphorus-Based GAP Protocol. Frontiers in Chemistry, 2021, 9, 742399.	3.6	1
25	Metalâ€ŧoâ€Ligand Ratioâ€Dependent Chemodivergent Asymmetric Synthesis. Angewandte Chemie - International Edition, 2021, 60, 22892-22899.	13.8	16
26	Cobalt- and iron-catalyzed regiodivergent alkene hydrosilylations. Organic Chemistry Frontiers, 2021, 8, 2174-2181.	4.5	15
27	Asymmetric synthesis of functionalized 2,3-dihydrobenzofurans using salicyl <i>N</i> -phosphonyl imines facilitated by group-assisted purification (GAP) chemistry. Organic and Biomolecular Chemistry, 2021, 19, 10319-10325.	2.8	3
28	Asymmetric [4 + 2] cycloaddition synthesis of 4 <i>H</i> -chromene derivatives facilitated by group-assisted-purification (GAP) chemistry. RSC Advances, 2021, 11, 39790-39796.	3.6	4
29	Rh(III)-Catalyzed [3 + 3] Annulation Reaction of Cyclopropenones and Sulfoxonium Ylides toward Trisubstituted 2-Pyrones. Journal of Organic Chemistry, 2020, 85, 360-366.	3.2	34
30	Enantioselective assembly of multi-layer <i>3D</i> chirality. National Science Review, 2020, 7, 588-599.	9.5	36
31	Molecular Design of Fused-Ring Phenazine Derivatives for Long-Cycling Alkaline Redox Flow Batteries. ACS Energy Letters, 2020, 5, 411-417.	17.4	136
32	Ligandâ€Controlled Direct γâ€Câ^'H Arylation of Aldehydes. Angewandte Chemie, 2020, 132, 3102-3106.	2.0	17
33	Ligandâ€Controlled Direct γâ€Câ~'H Arylation of Aldehydes. Angewandte Chemie - International Edition, 2020, 59, 3078-3082.	13.8	72
34	Iridium-Catalyzed C–H Amination of Weinreb Amides: A Facile Pathway toward Anilines and Quinazolin-2,4-diones. Journal of Organic Chemistry, 2020, 85, 13096-13107.	3.2	10
35	Photocatalytic radical defluoroalkylation of unactivated alkenes via distal heteroaryl ipso-migration. Communications Chemistry, 2020, 3, .	4.5	21
36	Chemicalâ€Reductantâ€Free Electrochemical Deuteration Reaction using Deuterium Oxide. Angewandte Chemie - International Edition, 2020, 59, 13962-13967.	13.8	99

#	Article	IF	CITATIONS
37	Rh(III)â€Catalyzed [4+1] Cyclization of Sulfoxonium Ylides and Anthranils for Accessing <i>N</i> â€Arylisatins. ChemCatChem, 2020, 12, 4689-4694.	3.7	5
38	Chemicalâ€Reductantâ€Free Electrochemical Deuteration Reaction using Deuterium Oxide. Angewandte Chemie, 2020, 132, 14066-14071.	2.0	20
39	Stereospecific Electrophilic Fluorocyclization of α,β-Unsaturated Amides with Selectfluor. Organic Letters, 2020, 22, 2651-2656.	4.6	10
40	Hypervalent Iodine (III) Catalyzed Regio- and Diastereoselective Aminochlorination of Tailored Electron Deficient Olefins via GAP Chemistry. Frontiers in Chemistry, 2020, 8, 523.	3.6	8
41	Redox-Neutral P(O)–N Coupling between P(O)–H Compounds and Azides via Dual Copper and Photoredox Catalysis. Organic Letters, 2020, 22, 6143-6149.	4.6	27
42	Synthesis of Diastereoenriched <i>α</i> â€Aminomethyl Enaminones via a BrÃ,nsted Acidâ€Catalyzed Asymmetric <i>aza</i> â€Baylisâ€Hillman Reaction of Chiral <i>N</i> â€Phosphonyl Imines. Chemistry - an Asian Journal, 2020, 15, 1125-1131.	3.3	10
43	Copper-Catalyzed Annulation–Cyanotrifluoromethylation of 1,6-Enynes Toward 1-Indanones via a Radical Process. Frontiers in Chemistry, 2020, 8, 234.	3.6	13
44	Multi-layer 3D chirality: new synthesis, AIE and computational studies. Science China Chemistry, 2020, 63, 692-698.	8.2	27
45	Electroreductive 4-Pyridylation of Electron-deficient Alkenes with Assistance of Ni(acac) ₂ . Organic Letters, 2020, 22, 3570-3575.	4.6	43
46	Cobalt(II)-Catalyzed Stereoselective Olefin Isomerization: Facile Access to Acyclic Trisubstituted Alkenes. Journal of the American Chemical Society, 2020, 142, 8910-8917.	13.7	58
47	Rh-Catalyzed Chemoselective [4 + 1] Cycloaddition Reaction toward Diverse 4-Methyleneprolines. Journal of Organic Chemistry, 2019, 84, 10877-10891.	3.2	15
48	Copper and cobalt co-catalyzed aerobic oxidative cross-dehydrogenative coupling reaction of (benzo)azoles. Green Chemistry, 2019, 21, 5797-5802.	9.0	23
49	Photoredoxâ€Catalzyed Haloâ€ŧrifluoromethylation of 1,7â€Enynes for Synthesis of 3,4â€Dihydroquinolinâ€2(1 <i>H</i>)â€ones. Advanced Synthesis and Catalysis, 2019, 361, 1835-1845.	4.3	35
50	Photoredox- or Metal-Catalyzed in Situ SO ₂ -Capture Reactions: Synthesis of β-Ketosulfones and Allylsulfones. Organic Letters, 2019, 21, 1216-1220.	4.6	54
51	Design, synthesis and biological evaluation of 2-H pyrazole derivatives containing morpholine moieties as highly potent small molecule inhibitors of APC–Asef interaction. European Journal of Medicinal Chemistry, 2019, 177, 425-447.	5.5	15
52	Synergistic combination of visible-light photo-catalytic electron and energy transfer facilitating multicomponent synthesis of β-functionalized α,α-diarylethylamines. Chemical Communications, 2019, 55, 6405-6408.	4.1	19
53	Iridium-Catalyzed C–H Amination/Cyclization for Medium to Large <i>N</i> -Heterocycle-Fused Dihydroquinazolinones. Organic Letters, 2019, 21, 3706-3710.	4.6	15
54	Electrochemical Hydrogenation with Gaseous Ammonia. Angewandte Chemie, 2019, 131, 1773-1777.	2.0	30

#	Article	IF	CITATIONS
55	Electrochemical Hydrogenation with Gaseous Ammonia. Angewandte Chemie - International Edition, 2019, 58, 1759-1763.	13.8	87
56	Multilayer <i>3D</i> Chirality and Its Synthetic Assembly. Research, 2019, 2019, 6717104.	5.7	23
57	Diastereoselective Synthesis of Poly-Substituted syn-Imidazolidine-2-thiones via Microwave-Assisted Three-Component [2+2+1] Heterocyclizations. Heterocycles, 2019, 99, 267.	0.7	2
58	Efficient Synthesis of Methyl (S)-4-(1-Methylpyrrolidin-2-yl)-3-oxobutanoate as the Key Intermediate for Tropane Alkaloid Biosynthesis with Optically Active Form. Heterocycles, 2019, 99, 604.	0.7	4
59	Electrochemical Aziridination by Alkene Activation Using a Sulfamate as the Nitrogen Source. Angewandte Chemie - International Edition, 2018, 57, 5695-5698.	13.8	116
60	Electrochemical Aziridination by Alkene Activation Using a Sulfamate as the Nitrogen Source. Angewandte Chemie, 2018, 130, 5797-5800.	2.0	35
61	Palladium-catalyzed site-selective arylation of aliphatic ketones enabled by a transient ligand. Chemical Communications, 2018, 54, 2759-2762.	4.1	38
62	Double SO2 Insertion into 1,7-Diynes Leading to Functionalized Naphtho[1,2-c]thiophene 2,2-dioxides. ACS Omega, 2018, 3, 1482-1491.	3.5	36
63	Visible-light-promoted intramolecular C–H amination in aqueous solution: synthesis of carbazoles. Green Chemistry, 2018, 20, 1362-1366.	9.0	34
64	Oxidative Catalytic Spiroketalization Leading to Diastereoselective Synthesis of Spiro[benzofuranâ€2,1′â€isochromene]s. Advanced Synthesis and Catalysis, 2018, 360, 1182-1192.	4.3	16
65	Hydrophosphonodifluoromethylation of Alkenes via Thiyl-Radical/Photoredox Catalysis. Journal of Organic Chemistry, 2018, 83, 578-587.	3.2	31
66	Thiazolium salt-catalyzed C–C triple bond cleavage for accessing substituted 1-naphthols via benzannulation. Chemical Communications, 2018, 54, 164-167.	4.1	43
67	Group-Assisted Purification Chemistry for Asymmetric Mannich-type Reaction of Chiral <i>N</i> -Phosphonyl Imines with Azlactones Leading to Syntheses of α-Quaternary α,β-Diamino Acid Derivatives. Journal of Organic Chemistry, 2018, 83, 644-655.	3.2	38
68	Synthesis of Functionalized Chromene and Chroman Derivatives via Cesium Carbonate Promoted Formal [4 + 2] Annulation of 2′-Hydroxychalcones with Allenoates. Journal of Organic Chemistry, 2018, 83, 15372-15379.	3.2	27
69	Fe(III)-Catalyzed Bicyclization of Yne-Allenones With Indoles for the Atom-Economic Synthesis of 3-Indolyl Cyclobutarenes. Frontiers in Chemistry, 2018, 6, 599.	3.6	5
70	Electrochemical Sulfonylation/Heteroarylation of Alkenes via Distal Heteroaryl <i>ipso</i> -Migration. Organic Letters, 2018, 20, 7784-7789.	4.6	61
71	Cobalt-Catalyzed Secondary Alkylation of Arenes and Olefins with Alkyl Ethers through the Cleavage of C(sp ²)–H and C(sp ³)–O Bonds. Journal of Organic Chemistry, 2018, 83, 13402-13413.	3.2	13
72	Application of Hantzsch Ester and Meyer Nitrile in Radical Alkynylation Reactions. Organic Letters, 2018, 20, 6906-6909.	4.6	31

#	Article	IF	CITATIONS
73	lridium-Catalyzed Unreactive C(sp ³)–H Amination with 2,2,2-Trichloroethoxycarbonyl Azide. Organic Letters, 2018, 20, 6260-6264.	4.6	25
74	High-Performance Alkaline Organic Redox Flow Batteries Based on 2-Hydroxy-3-carboxy-1,4-naphthoquinone. ACS Energy Letters, 2018, 3, 2404-2409.	17.4	104
75	<i>N</i> -Sulfonyl Bisimidazoline Ligands and Their Applications in Pd(II)-Catalyzed Asymmetric Addition toward α-Tertiary Amines. Organic Letters, 2018, 20, 6616-6621.	4.6	23
76	Iridium-Catalyzed Aryl C–H Sulfonamidation and Amide Formation Using a Bifunctional Nitrogen Source. Organic Letters, 2018, 20, 4828-4832.	4.6	19
77	Catalytic Double [2 + 2] Cycloaddition Relay Enabled C–C Triple Bond Cleavage of Yne–Allenones. Organic Letters, 2018, 20, 4362-4366.	4.6	32
78	Visible-Light-Induced Intramolecular C(sp ²)–H Amination and Aziridination of Azidoformates via a Triplet Nitrene Pathway. Organic Letters, 2018, 20, 4838-4842.	4.6	42
79	Recent advances in radical transformations of internal alkynes. Chemical Communications, 2018, 54, 10791-10811.	4.1	178
80	Oxidative Cascade Reaction of <i>N</i> -Aryl-3-alkylideneazetidines and Carboxylic Acids: Access to Fused Pyridines. Organic Letters, 2018, 20, 3833-3837.	4.6	15
81	Silver-Mediated Radical C(sp ³)–H Biphosphinylation and Nitration of β-Alkynyl Ketones for Accessing Functional Isochromenes. Organic Letters, 2017, 19, 754-757.	4.6	72
82	Chiral GAP catalysts of phosphonylated imidazolidinones and their applications in asymmetric Diels–Alder and Friedel–Crafts reactions. Organic and Biomolecular Chemistry, 2017, 15, 1718-1724.	2.8	20
83	Radicalâ€Enabled Bicyclization Cascades of Oxygenâ€Tethered 1,7â€Enynes Leading to Skeletally Diverse Polycyclic Chromenâ€2â€ones. Chinese Journal of Chemistry, 2017, 35, 323-334.	4.9	48
84	I ₂ -Catalyzed sulfenylation of indoles and pyrroles using triethylammonium thiolates as sulfenylating agents. Organic Chemistry Frontiers, 2017, 4, 1091-1102.	4.5	20
85	Metal-free benzannulation of 1,7-diynes towards unexpected 1-aroyl-2-naphthaldehydes and their application in fused aza-heterocyclic synthesis. Chemical Communications, 2017, 53, 3369-3372.	4.1	14
86	Asymmetric [3 + 2] Cycloaddition of Chiral <i>N</i> Phosphonyl Imines with Methyl Isocyanoacetate for Accessing 2-Imidazolines with Switchable Stereoselectivity. Journal of Organic Chemistry, 2017, 82, 2992-2999.	3.2	26
87	Thermal Rearrangement of Sulfamoyl Azides: Reactivity and Mechanistic Study. Journal of Organic Chemistry, 2017, 82, 4677-4688.	3.2	23
88	Radical Deaminative <i>ipso</i> -Cyclization of 4-Methoxyanilines with 1,7-Enynes for Accessing Spirocyclohexadienone-Containing Cyclopenta[<i>c</i>]quinolin-4-ones. Journal of Organic Chemistry, 2017, 82, 6621-6628.	3.2	43
89	Synthesis of Diastereoenriched Oxazolo[5,4- <i>b</i>]indoles via Catalyst-Free Multicomponent Bicyclizations. Journal of Organic Chemistry, 2017, 82, 3605-3611.	3.2	52
90	Cobalt-Catalyzed Decarboxylative C–H (Hetero)Arylation for the Synthesis of Arylheteroarenes and Unsymmetrical Biheteroaryls. Organic Letters, 2017, 19, 5589-5592.	4.6	33

#	Article	IF	CITATIONS
91	Metalâ€Free Radicalâ€Triggered Selenosulfonation of 1,7â€Enynes for the Rapid Synthesis of 3,4â€Dihydroquinolinâ€2(1 <i>H</i>)â€ones in Batch and Flow. Advanced Synthesis and Catalysis, 2017, 359, 4332-4339.	4.3	32
92	Cobalt-Catalyzed Cross-Dehydrogenative Coupling Reaction between Unactivated C(sp ²)–H and C(sp ³)–H Bonds. Organic Letters, 2017, 19, 4676-4679.	4.6	64
93	Synthesis of Tribenzo[<i>b</i> , <i>e</i> , <i>g</i>]phosphindole Oxides via Radical Bicyclization Cascades of <i>o</i> -Arylalkynylanilines. Organic Letters, 2017, 19, 4512-4515.	4.6	28
94	Merging [2+2] Cycloaddition with Radical 1,4â€Addition: Metalâ€Free Access to Functionalized Cyclobuta[<i>a</i>]naphthalenâ€4â€ols. Angewandte Chemie - International Edition, 2017, 56, 15570-15574.	13.8	190
95	Synergistic silver/scandium catalysis for divergent synthesis of skeletally diverse chromene derivatives. Chemical Communications, 2017, 53, 10692-10695.	4.1	44
96	Tunable Dimerization and Trimerization of βâ€Alkynyl Ketones <i>via</i> Silver Catalysis for Accessing Spiro and Dispiro Compounds Containing 1 <i>H</i> â€Isochromene. Advanced Synthesis and Catalysis, 2017, 359, 3186-3193.	4.3	27
97	Facile synthesis of benzo[b]thiophenes via metal-free radical-triggered intramolecular C–S bond formation. Organic and Biomolecular Chemistry, 2017, 15, 6493-6499.	2.8	15
98	Chiral Phosphinyl Enamines and Their Asymmetric Reduction through Group-Assisted Purification Chemistry Leading to Enantiopure β-Amino Esters/Amides. Synlett, 2017, 28, 2483-2488.	1.8	6
99	Synthesis of Functionalized Benzo[g]indoles and 1-Naphthols via Carbon–Carbon Triple Bond Breaking/Rearranging. Organic Letters, 2017, 19, 6682-6685.	4.6	44
100	Practical Singly and Doubly Electrophilic Aminating Agents: A New, More Sustainable Platform for Carbon–Nitrogen Bond Formation. Journal of the American Chemical Society, 2017, 139, 11184-11196.	13.7	60
101	Ag/BrÃ,nsted Acid Co-Catalyzed Spiroketalization of β-Alkynyl Ketones toward Spiro[chromane-2,1′-isochromene] Derivatives. Organic Letters, 2017, 19, 3831-3834.	4.6	93
102	Titelbild: Merging [2+2] Cycloaddition with Radical 1,4â€Addition: Metalâ€Free Access to Functionalized Cyclobuta[<i>a</i>]naphthalenâ€4â€ols (Angew. Chem. 49/2017). Angewandte Chemie, 2017, 129, 15677-156.	77.0	0
103	GAP Peptide Synthesis through the Design of a GAP Protecting Group: An Fmoc/ <i>t</i> Bu Synthesis of Thymopentin Free from Polymers, Chromatography and Recrystallization. European Journal of Organic Chemistry, 2016, 2016, 1714-1719.	2.4	37
104	Cobaltâ€Catalyzed C(sp ²)â^'H Methylation by using Dicumyl Peroxide as both the Methylating Reagent and Hydrogen Acceptor. Chemistry - A European Journal, 2016, 22, 12286-12289.	3.3	42
105	Carboxylateâ€Assisted Iridiumâ€Catalyzed Câ d Amination of Arenes with Biologically Relevant Alkyl Azides. Chemistry - A European Journal, 2016, 22, 2920-2924.	3.3	42
106	Design, biological evaluation and 3D QSAR studies of novel dioxin-containing pyrazoline derivatives with thiourea skeleton as selective HER-2 inhibitors. Scientific Reports, 2016, 6, 27571.	3.3	13
107	Catalytic Diazosulfonylation of Enynals toward Diazoindenes via Oxidative Radical-Triggered 5- <i>exo</i> - <i>trig</i> Carbocyclizations. Organic Letters, 2016, 18, 1884-1887.	4.6	66
108	Design, biological evaluation and 3D QSAR studies of novel dioxin-containing triaryl pyrazoline derivatives as potential B-Raf inhibitors. Bioorganic and Medicinal Chemistry, 2016, 24, 3052-3061.	3.0	24

#	Article	IF	CITATIONS
109	Copper-promoted site-selective carbonylation of sp ³ and sp ² C–H bonds with nitromethane. Chemical Science, 2016, 7, 5260-5264.	7.4	48
110	Cesium Carboxylate-Promoted Iridium Catalyzed C–H Amidation/Cyclization with 2,2,2-Trichloroethoxycarbonyl Azide. Journal of Organic Chemistry, 2016, 81, 4898-4905.	3.2	35
111	Catalytic Sulfur-Enabled Dehydrobicyclization of 1,6-Enynes toward Arylated Indeno[1,2- <i>c</i>]thiophenes. Journal of Organic Chemistry, 2016, 81, 4762-4770.	3.2	27
112	Dual rhodium/copper catalysis: synthesis of benzo[b]fluorenes and 2-naphthalenylmethanones via de-diazotized cycloadditions. Chemical Communications, 2016, 52, 11943-11946.	4.1	19
113	Thiyl-Radical-Catalyzed Photoreductive Hydrodifluoroacetamidation of Alkenes with Hantzsch Ester as a Multifunctional Reagent. ACS Catalysis, 2016, 6, 7471-7474.	11.2	45
114	Difluoroalkylation/C–H Annulation Cascade Reaction Induced by Visible-Light Photoredox Catalysis. Journal of Organic Chemistry, 2016, 81, 9992-10001.	3.2	54
115	Asymmetric Synthesis of Chiral α-Methyl-α,β-diamino Acid Derivatives via Group-Assisted Purification Chemistry Using <i>N</i> -Phosphonyl Imines and a Ni(II)-Complexed Alanine Schiff Base. Journal of Organic Chemistry, 2016, 81, 7654-7661.	3.2	20
116	Intermolecular C–H Quaternary Alkylation of Aniline Derivatives Induced by Visible-Light Photoredox Catalysis. Organic Letters, 2016, 18, 4538-4541.	4.6	37
117	Cascade bicyclization of triethylammonium thiolates with hydrazines: efficient access to pyrazolo[3,4-c]quinolines. Organic and Biomolecular Chemistry, 2016, 14, 9080-9087.	2.8	9
118	DDQ-Mediated Three-Component Dioxygenation of Alkenes. Journal of Organic Chemistry, 2016, 81, 9350-9355.	3.2	23
119	Sulfonyl radical-enabled 6-endo-trig cyclization for regiospecific synthesis of unsymmetrical diaryl sulfones. Organic Chemistry Frontiers, 2016, 3, 1452-1456.	4.5	57
120	Catalytic C–H Arylation of Aliphatic Aldehydes Enabled by a Transient Ligand. Journal of the American Chemical Society, 2016, 138, 12775-12778.	13.7	177
121	Building Congested Ketone: Substituted Hantzsch Ester and Nitrile as Alkylation Reagents in Photoredox Catalysis. Journal of the American Chemical Society, 2016, 138, 12312-12315.	13.7	159
122	Asymmetric Catalytic Enantio- and Diastereoselective Boron Conjugate Addition Reactions of α-Functionalized α,β-Unsaturated Carbonyl Substrates. Organic Letters, 2016, 18, 3926-3929.	4.6	37
123	Cobalt-Catalyzed Cross-Dehydrogenative Coupling Reactions of (Benz)oxazoles with Ethers. Journal of Organic Chemistry, 2016, 81, 11743-11750.	3.2	68
124	Base-Promoted [4 + 1]/[3 + 1 + 1] Bicyclization for Accessing Functionalized Indeno[1,2- <i>c</i>]furans. Journal of Organic Chemistry, 2016, 81, 11276-11281.	3.2	22
125	High-Valent Palladium-Promoted Formal Wagner–Meerwein Rearrangement. Organic Letters, 2016, 18, 5804-5807	4.6	22
126	Threeâ€Component Bicyclization Leading to Densely Functionalized Pyrazolo[3,4â€ <i>d</i>]thiazolo[3,2â€ <i>a</i>]pyrimidines. European Journal of Organic Chemistry, 2016, 2016, 1968-1971.	2.4	8

#	Article	IF	CITATIONS
127	Catalytic Oxidative Carbene Coupling of α-Diazo Carbonyls for the Synthesis of β-Amino Ketones via C(sp ³)–H Functionalization. Organic Letters, 2016, 18, 3078-3081.	4.6	37
128	Hantzsch Ester as a Photosensitizer for the Visibleâ€Lightâ€Lnduced Debromination of Vicinal Dibromo Compounds. Chemistry - A European Journal, 2016, 22, 9546-9550.	3.3	60
129	Asymmetric synthesis of homoallylic amines via 1,2-addition of Grignard reagent to aliphatic N-phosphonyl hemiaminal. Tetrahedron Letters, 2016, 57, 619-622.	1.4	12
130	A new cascade halosulfonylation of 1,7-enynes toward 3,4-dihydroquinolin-2(1H)-ones via sulfonyl radical-triggered addition/6-exo-dig cyclization. Chemical Communications, 2016, 52, 1907-1910.	4.1	121
131	Chiral <i>N</i> -Phosphonyl Imines for an Aza-Morita–Baylis–Hillman Reaction via Group-Assisted Purification (GAP) Chemistry. Journal of Organic Chemistry, 2016, 81, 2488-2493.	3.2	30
132	I ₂ /O ₂ -Enabled N–S Bond Formation to Access Functionalized 1,2,3-Thiadiazoles. Organic Letters, 2016, 18, 1258-1261.	4.6	34
133	Synergistic Rhodium/Copper Catalysis: Synthesis of 1,3-Enynes and <i>N</i> -Aryl Enaminones. Organic Letters, 2016, 18, 1298-1301.	4.6	46
134	Rhodium-Catalyzed Selective Mono- and Diamination of Arenes with Single Directing Site "On Water― Organic Letters, 2016, 18, 1386-1389.	4.6	80
135	Metal-Free Radical Haloazidation of Benzene-Tethered 1,7-Enynes Leading to Polyfunctionalized 3,4-Dihydroquinolin-2(1 <i>H</i>)-ones. Journal of Organic Chemistry, 2016, 81, 1099-1105.	3.2	71
136	Unexpected isocyanide-based three-component bicyclization for the stereoselective synthesis of densely functionalized pyrano[3,4-c]pyrroles. Chemical Communications, 2016, 52, 900-903.	4.1	54
137	Gold(I) atalyzed Desymmetrization of 1,4â€Dienes by an Enantioselective Tandem Alkoxylation/Claisen Rearrangement. Angewandte Chemie - International Edition, 2015, 54, 8529-8532.	13.8	58
138	Asymmetric boron conjugate addition to \hat{l}_{\pm}, \hat{l}^2 -unsaturated carbonyl compounds catalyzed by CuOTf/Josiphos under non-alkaline conditions. Organic Chemistry Frontiers, 2015, 2, 42-46.	4.5	26
139	Base-Promoted Transannulation of Heterocyclic Enamines and 2,3-Epoxypropan-1-ones: Regio- and Stereoselective Synthesis of Fused Pyridines and Pyrroles. Journal of Organic Chemistry, 2015, 80, 2781-2789.	3.2	20
140	Cascade bicyclizations of o-alkynyl aldehydes with thiazolium salts: a new access toward poly-functionalized indeno[2,1-b]pyrroles. Chemical Communications, 2015, 51, 13012-13015.	4.1	21
141	Catalytic Dual 1,1-H-Abstraction/Insertion for Domino Spirocyclizations. Journal of the American Chemical Society, 2015, 137, 8928-8931.	13.7	196
142	Cobalt-catalysed site-selective intra- and intermolecular dehydrogenative amination of unactivated sp3 carbons. Nature Communications, 2015, 6, 6462.	12.8	229
143	Synthesis of 3-Iminoindol-2-amines and Cyclic Enaminones via Palladium-Catalyzed Isocyanide Insertion-Cyclization. Journal of Organic Chemistry, 2015, 80, 5764-5770.	3.2	67
144	Cobalt-Catalyzed Decarboxylative 2-Benzoylation of Oxazoles and Thiazoles with α-Oxocarboxylic Acids. Journal of Organic Chemistry, 2015, 80, 11065-11072.	3.2	70

#	Article	IF	CITATIONS
145	Synthesis of Allenyl Sulfones via a TBHP/TBAI-Mediated Reaction of Propargyl Alcohols with Sulfonyl Hydrazides. Journal of Organic Chemistry, 2015, 80, 9224-9230.	3.2	71
146	Catalytic arylsulfonyl radical-triggered 1,5-enyne-bicyclizations and hydrosulfonylation of α,β-conjugates. Chemical Science, 2015, 6, 6654-6658.	7.4	145
147	Catalytic Arylsulfonyl Radical Triggered 1,7-Enyne Bicyclizations. Organic Letters, 2015, 17, 6078-6081.	4.6	110
148	Asymmetric Carbamoyl Anion Additions to Chiral <i>N</i> -Phosphonyl Imines via the GAP Chemistry Process and Stereoselectivity Enrichments. Journal of Organic Chemistry, 2015, 80, 447-452.	3.2	26
149	N-Phosphonyl/phosphinyl imines and group-assisted purification (GAP) chemistry/technology. Organic and Biomolecular Chemistry, 2015, 13, 1600-1617.	2.8	90
150	Synthesis of enaminones and their difluoroboron complexes through domino aryl migration. Chemical Communications, 2015, 51, 1267-1270.	4.1	24
151	One-pot stereoselective synthesis of α,β-differentiated diamino esters via the sequence of aminochlorination, aziridination and intermolecular S _N 2 reaction. Beilstein Journal of Organic Chemistry, 2014, 10, 1802-1807.	2.2	3
152	The Catalytic Synthesis of Carboniolamide: The Role of sp 3 Hybridized Oxygen. Synlett, 2014, 25, 2644-2648.	1.8	3
153	Group-assisted purification (GAP) chemistry for the synthesis of Velcade via asymmetric borylation of <i>N</i> -phosphinylimines. Beilstein Journal of Organic Chemistry, 2014, 10, 746-751.	2.2	37
154	Domino Reaction of Arylglyoxals with Pyrazol-5-amines: Selective Access to Pyrazolo-Fused 1,7-Naphthyridines, 1,3-Diazocanes, and Pyrroles. Journal of Organic Chemistry, 2014, 79, 5258-5268.	3.2	61
155	Solution-phase-peptide synthesis via the group-assisted purification (GAP) chemistry without using chromatography and recrystallization. Chemical Communications, 2014, 50, 1259-1261.	4.1	46
156	Four-Component Bicyclization Approaches to Skeletally Diverse Pyrazolo[3,4- <i>b</i>]pyridine Derivatives. Journal of Organic Chemistry, 2014, 79, 11110-11118.	3.2	63
157	Copper(I)-Catalyzed Multicomponent Reaction Providing a New Access to Fully Substituted Thiophene Derivatives. Organic Letters, 2014, 16, 3656-3659.	4.6	33
158	Four-component strategy for selective synthesis of azepino[5,4,3-cd]indoles and pyrazolo[3,4-b]pyridines. Chemical Communications, 2014, 50, 6108-6111.	4.1	54
159	Metalâ€Free Preparation of Cycloalkyl Aryl Sulfides <i>via</i> Diâ€ <i>tert</i> â€butyl Peroxideâ€Promoted Oxidative C(<i>sp</i> ³)H Bond Thiolation of Cycloalkanes. Advanced Synthesis and Catalysis, 2014, 356, 2719-2724.	4.3	81
160	Regioselective Multicomponent Domino Reactions Providing Rapid and Efficient Routes to Fused Acridines. Heterocycles, 2014, 88, 1065.	0.7	5
161	Synthesis of chiral <i>N</i> -phosphinyl α-imino esters and their application in asymmetric synthesis of α-amino esters by reduction. Beilstein Journal of Organic Chemistry, 2014, 10, 653-659.	2.2	9
162	Asymmetric C–C Bond Formation between Chiral <i>N</i> â€Phosphonyl Imines and a Nickel(II)â€Complexed Glycine Schiff Base Provides Efficient Synthesis of α,βâ€ <i>syn</i> â€Diamino Acid Derivatives. European Journal of Organic Chemistry, 2013, 2013, 4744-4747.	2.4	14

#	Article	IF	CITATIONS
163	Asymmetric Organocatalytic Tandem Cyclization/Transfer Hydrogenation: A Synthetic Strategy for Enantioenriched Nitrogen Heterocycles. Advanced Synthesis and Catalysis, 2013, 355, 3715-3726.	4.3	54
164	Asymmetric synthesis of α-alkenyl homoallylic primary amines via 1,2-addition of Grignard reagent to α,β-unsaturated phosphonyl imines. RSC Advances, 2013, 3, 15820.	3.6	7
165	Design, Synthesis, and Applications of Chiral <i>N</i> -2-Phenyl-2-propyl Sulfinyl Imines for Group-Assisted Purification (GAP) Asymmetric Synthesis. Journal of Organic Chemistry, 2013, 78, 4006-4012.	3.2	35
166	Palladium atalyzed C3 Acylation of Benzofurans and Benzothiophenes with Aromatic Aldehydes by Crossâ€Dehydrogenative Coupling Reactions. Asian Journal of Organic Chemistry, 2013, 2, 1044-1047.	2.7	21
167	Na ₃ PO ₄ -catalyzed aminochlorination reaction of β-nitrostyrenes in water. RSC Advances, 2012, 2, 151-155.	3.6	11
168	Highly regioselective aminobromination of α,β-unsaturated nitro compounds with benzyl carbamate/N-bromosuccinimide as nitrogen/bromine source. RSC Advances, 2012, 2, 5565.	3.6	10
169	Allylic Amination and <i>N</i> -Arylation-Based Domino Reactions Providing Rapid Three-Component Strategies to Fused Pyrroles with Different Substituted Patterns. Journal of Organic Chemistry, 2012, 77, 7497-7505.	3.2	69
170	Domino Constructions of Pentacyclic Indeno[2,1â€ <i>c</i>]quinolines and Pyrano[4,3â€ <i>b</i>]oxepines by [4+1]/[3+2+1]/[5+1] and [4+3] Multiple Cyclizations. Chemistry - A European Journal, 2012, 18, 9823-9826.	3.3	64
171	Asymmetric Synthesis of α-Amino-1,3-dithianes via Chiral <i>N</i> -Phosphonyl Imine-Based Umpolung Reaction Without Using Chromatography and Recrystallization. Journal of Organic Chemistry, 2011, 76, 2792-2797.	3.2	40
172	[4+2+1] Domino cyclization in water for chemo- and regioselective synthesis of spiro-substituted benzo[b]furo[3,4-e][1,4]diazepine derivatives. Green Chemistry, 2011, 13, 2107.	9.0	72
173	The GAP chemistry for chiral N-phosphonyl imine-based Strecker reaction. Green Chemistry, 2011, 13, 1288.	9.0	51
174	Functionalization of graphene sheets through fullerene attachment. Journal of Materials Chemistry, 2011, 21, 5386.	6.7	104
175	<i>N</i> â€Phosphinyl Imine Chemistry (I): Design and Synthesis of Novel <i>N</i> â€Phosphinyl Imines and their Application to Asymmetric azaâ€Henry Reaction. Chemical Biology and Drug Design, 2011, 77, 20-29.	3.2	42
176	New multicomponent domino reactions (MDRs) in water: highly chemo-, regio- and stereoselective synthesis of spiro{[1,3]dioxanopyridine}-4,6-diones and pyrazolo[3,4-b]pyridines. Green Chemistry, 2010, 12, 1357.	9.0	143
177	Multicomponent Reactions for the Synthesis of Heterocycles. Chemistry - an Asian Journal, 2010, 5, 2318-2335.	3.3	392
178	Chiral N-phosphonyl imine chemistry: asymmetric additions of glycine enolate to diphenyl diamine-based phosphonyl imines. Science China Chemistry, 2010, 53, 125-129.	8.2	17
179	Regioselective aminohalogenation of \hat{l}^2 -nitrostyrenes using NCS and NBS as nitrogen/halogen sources. Science China Chemistry, 2010, 53, 140-146.	8.2	14
180	The combination of benzamides/NCS as nitrogen/halogen sources for aminohalogenation of β-nitrostyrenes resulting in dichlorinated haloamides. Science China Chemistry, 2010, 53, 1946-1952.	8.2	12

#	Article	IF	CITATIONS
181	Chiral N-phosphoryl imines: design, synthesis and direct asymmetric addition reactions with diketones and diesters. Tetrahedron Letters, 2010, 51, 4403-4407.	1.4	22
182	Research Article: Asymmetric Hydrophosphylation of Chiral <i>N</i> â€Phosphonyl Imines Provides an Efficient Approach to Chiral αâ€Amino Phosphonates. Chemical Biology and Drug Design, 2010, 76, 314-319.	3.2	20
183	Asymmetric Catalytic <i>N</i> -Phosphonyl Imine Chemistry: The Use of Primary Free Amino Acids and Et ₂ AlCN for Asymmetric Catalytic Strecker Reaction. Journal of Organic Chemistry, 2010, 75, 5144-5150.	3.2	65
184	Asymmetric catalytic Strecker reaction of N-phosphonyl imines with Et2AlCN using amino alcohols and BINOLs as catalysts. Chemical Communications, 2010, 46, 4330.	4.1	71
185	Chiral <i>N</i> â€Phosphonylimine Chemistry: Asymmetric Synthesis of <i>N</i> â€Phosphonyl βâ€Amino Weinreb Amides. European Journal of Organic Chemistry, 2009, 2009, 912-916.	2.4	35
186	Chiral <i>N</i> â€Phosphonyl Imine Chemistry: Asymmetric Synthesis of αâ€Alkyl βâ€Amino Ketones by Reacting Phosphonyl Imines with Ketoneâ€Derived Enolates. Chemical Biology and Drug Design, 2009, 73, 203-208.	3.2	28
187	Four-Component Domino Reaction Leading to Multifunctionalized Quinazolines. Journal of the American Chemical Society, 2009, 131, 11660-11661.	13.7	234
188	Chiral <i>N</i> â€Phosphonyl Imine Chemistry: Asymmetric Azaâ€Henry Reaction. Chemical Biology and Drug Design, 2008, 71, 216-223.	3.2	43
189	Chiral <i>N</i> â€Phosphonyl Imine Chemistry: Asymmetric Additions of Ester Enolates for the Synthesis of <i>β</i> â€Amino Acids. Chemical Biology and Drug Design, 2008, 72, 120-126.	3.2	35
190	Ionic Liquid, 1-n-Butyl-3-methylimidazolium Bis(trifluoromethanesulfonyl)imide, Resulted in the First Catalyst-Free Aminohalogenation of Electron-Deficient Alkenes. Advanced Synthesis and Catalysis, 2007, 349, 319-322.	4.3	29
191	CuCl-Catalyzed Regio- and Stereoselective Aminohalogenation of α,β-Unsaturated Nitriles. European Journal of Organic Chemistry, 2007, 2007, 1332-1337.	2.4	56
192	Recent Development of Regio―and Stereoselective Aminohalogenation Reaction of Alkenes. European Journal of Organic Chemistry, 2007, 2007, 2745-2758.	2.4	173
193	Regio- and Stereoselective Synthesis ofanti-1,3-Diaryl-3-chloro- 2-(o-nitrophenylsulfonylamino)-3-propan-1-ones through Catalytic Aminohalogenation Reaction of α,β-Unsaturated Ketones. European Journal of Organic Chemistry, 2006, 2006, 3112-3115.	2.4	38
194	A Lewis Acid Promoted Asymmetric Umpolung Reaction with ChiralN-Sulfinyl Imines as the Electrophiles. European Journal of Organic Chemistry, 2005, 2005, 1805-1809.	2.4	10
195	Regio- and Stereoselective Copper-Catalyzed Synthesis of Vicinal Haloamino Ketones fromα,β-Unsaturated Ketones. European Journal of Organic Chemistry, 2004, 2004, 3097-3101.	2.4	59
196	A Polymer-Supported Phosphoramide as a Lewis-Base Catalyst for the Catalytic Aldol Reaction. European Journal of Organic Chemistry, 2004, 2004, 2988-2990.	2.4	23
197	The First Enantioselective Halo Aldol Reaction of Ethyl Propiolate and Aldehydes. European Journal of Organic Chemistry, 2004, 2004, 3330-3335.	2.4	24
198	Synthesis of Substitutedα-(Hydroxymethyl)-β-iodoacrylatesvia MgI2-Promoted Stereoselective Aldol Coupling. Helvetica Chimica Acta, 2004, 87, 2359-2363.	1.6	20

		11	CHAHONS
199	The Combination of TsNH2 and NCS as Nitrogen and Chlorine Sources for Direct Diamination of Enones. European Journal of Organic Chemistry, 2003, 2003, 3850-3854.	2.4	36
200	Asymmetric Halo Aldol Reaction (AHA). Organic Letters, 2003, 5, 329-331.	4.6	35
201	Z/ESTEREOSELECTIVE SYNTHESIS OF β-BROMO BAYLIS-HILLMAN KETONES VIA A ONE-POT THREE-COMPONENT X–C/C–C FORMATION REACTION. Synthetic Communications, 2002, 32, 1765-1773.	2.1	12
202	The Asymmetric Catalytic Aldol Reaction of Allenolates with Aldehydes UsingN-Fluoroacyl Oxazaborolidine as the Catalyst. Organic Letters, 2001, 3, 823-826.	4.6	67
203	A Novel Electrophilic Diamination Reaction of Alkenes. Angewandte Chemie - International Edition, 2001, 40, 4277-4280.	13.8	166
204	α,β-Differentiated tandem diamination of cinnamic esters using N,N-dichloro-2-nitrobenzenesulfonamide and acetonitrile as the nitrogen sources. Tetrahedron Letters, 2000, 41, 8699-8703.	1.4	49
205	Highly Efficient Deprotection of N-p-Toluenesulfinyl Group of β-Branched Baylis–Hillman Adducts by Using Amberlite IR-120 (Plus) Ion-Exchange Resin. Tetrahedron, 2000, 56, 719-723.	1.9	22
206	New CC Bond Formation via Nonstoichiometric Titanium(IV) Halide Mediated Vicinal Difunctionalization of α,β-Unsaturated Acyclic Ketones. Organic Letters, 2000, 2, 617-620.	4.6	91
207	Copper-Catalyzed Aminohalogenation Using the 2-NsNCl2/2-NsNHNa Combination as the Nitrogen and Halogen Sources for the Synthesis of anti-Alkyl 3-Chloro-2-(o-nitrobenzenesulfonamido)-3-arylpropionates. Organic Letters, 2000, 2, 2249-2252.	4.6	88
208	Ytterbium(III) triflate-catalyzed asymmetric nucleophilic addition of functionalized lithium (α-carbalkoxyvinyl)cuprates to chiral p-toluenesulfinimines (thiooxime S-oxides). Tetrahedron Letters, 1999, 40, 4611-4614.	1.4	23
209	Transition Metal-Catalyzed Regioselective and Stereoselective Aminochlorination of Cinnamic Esters. Organic Letters, 1999, 1, 395-398.	4.6	93
210	Novel Asymmetric Câ^'C Bond Formation Process Promoted by Et2AlCl and Its Application to the Stereoselective Synthesis of Unusual β-Branched Baylisâ^'Hillman Adducts. Journal of Organic Chemistry, 1999, 64, 1061-1064.	3.2	69
211	Z/E Selective Synthesis of β,β-Disubstituted and (Z)-β-Monosubstituted Baylis-Hillman AdductsViaAnionic Additions of Vinylcuprates to Aldehydes. Synthetic Communications, 1999, 29, 2959-2966.	2.1	13
212	A Mild Procedure for the Stereospecific Transformation of <i>trans</i> Cinnamic Acid Derivatives to <i>cis</i> β-Bromostyrenes. Synthetic Communications, 1999, 29, 4179-4185.	2.1	21
213	Design of peptides, proteins, and peptidomimetics in chi space. , 1997, 43, 219-266.		319
214	Topographical Amino Acid Substitution in Position 10 of Glucagon Leads to Antagonists/Partial Agonists with Greater Binding Differences. Journal of Medicinal Chemistry, 1996, 39, 2449-2455.	6.4	27
215	A New Strategy for the Synthesis of Four Individual Isomers of β-Methylphenylalanine. Synthetic Communications, 1995, 25, 57-61.	2.1	18