Jens Stougaard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6851299/publications.pdf

Version: 2024-02-01

14655 14759 17,537 164 66 127 citations h-index papers

g-index 178 178 178 9036 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Plant recognition of symbiotic bacteria requires two LysM receptor-like kinases. Nature, 2003, 425, 585-592.	27.8	1,092
2	A receptor kinase gene of the LysM type is involved in legumeperception of rhizobial signals. Nature, 2003, 425, 637-640.	27.8	896
3	A plant receptor-like kinase required for both bacterial and fungal symbiosis. Nature, 2002, 417, 959-962.	27.8	874
4	A plant regulator controlling development of symbiotic root nodules. Nature, 1999, 402, 191-195.	27.8	853
5	Lotus japonicus, an autogamous, diploid legume species for classical and molecular genetics. Plant Journal, 1992, 2, 487-496.	5.7	588
6	Shoot control of root development and nodulation is mediated by a receptor-like kinase. Nature, 2002, 420, 422-426.	27.8	529
7	A Gain-of-Function Mutation in a Cytokinin Receptor Triggers Spontaneous Root Nodule Organogenesis. Science, 2007, 315, 104-107.	12.6	502
8	The molecular network governing nodule organogenesis and infection in the model legume Lotus japonicus. Nature Communications, $2010,1,10.$	12.8	426
9	Deregulation of a Ca2+/calmodulin-dependent kinase leads to spontaneous nodule development. Nature, 2006, 441, 1153-1156.	27.8	400
10	From The Cover: A nucleoporin is required for induction of Ca2+ spiking in legume nodule development and essential for rhizobial and fungal symbiosis. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 359-364.	7.1	361
11	LysM domains mediate lipochitin–oligosaccharide recognition and Nfr genes extend the symbiotic host range. EMBO Journal, 2007, 26, 3923-3935.	7.8	346
12	Mesoamerican origin of the common bean (<i> Phaseolus vulgaris </i> L.) is revealed by sequence data. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E788-96.	7.1	327
13	Legume receptors perceive the rhizobial lipochitin oligosaccharide signal molecules by direct binding. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 13859-13864.	7.1	301
14	Seven Lotus japonicus Genes Required for Transcriptional Reprogramming of the Root during Fungal and Bacterial Symbiosis. Plant Cell, 2005, 17, 2217-2229.	6.6	293
15	Short root mutant of Lotus japonicus with a dramatically altered symbiotic phenotype. Plant Journal, 2000, 23, 97-114.	5.7	268
16	Standards for plant synthetic biology: a common syntax for exchange of <scp>DNA</scp> parts. New Phytologist, 2015, 208, 13-19.	7.3	263
17	Root Nodulation: A Paradigm for How Plant-Microbe Symbiosis Influences Host Developmental Pathways. Cell Host and Microbe, 2011, 10, 348-358.	11.0	259
18	The Sulfate Transporter SST1 Is Crucial for Symbiotic Nitrogen Fixation in Lotus japonicus Root Nodules. Plant Cell, 2005, 17, 1625-1636.	6.6	227

#	Article	IF	Citations
19	Evolution of NIN-Like Proteins in Arabidopsis, Rice, and Lotus japonicus. Journal of Molecular Evolution, 2005, 60, 229-237.	1.8	209
20	Regulators and Regulation of Legume Root Nodule Development. Plant Physiology, 2000, 124, 531-540.	4.8	207
21	Systemic control of legume susceptibility to rhizobial infection by a mobile microRNA. Science, 2018, 362, 233-236.	12.6	205
22	Chromosomal Map of the Model Legume <i>Lotus japonicus </i> . Genetics, 2002, 161, 1661-1672.	2.9	195
23	The Sym35 Gene Required for Root Nodule Development in Pea Is an Ortholog of Nin from Lotus japonicus Â. Plant Physiology, 2003, 131, 1009-1017.	4.8	168
24	Genetics and genomics of root symbiosis. Current Opinion in Plant Biology, 2001, 4, 328-335.	7.1	166
25	Autophosphorylation is essential for the <i>inâ€∫vivo</i> function of the <i>Lotus japonicus</i> Nod factor receptor 1 and receptor 5. Plant Journal, 2011, 65, 404-417.	5.7	165
26	Rearrangement of Actin Cytoskeleton Mediates Invasion of <i>Lotus japonicus </i> Roots by <i>Mesorhizobium loti </i> ÂÂ. Plant Cell, 2009, 21, 267-284.	6.6	149
27	Genomeâ€wide <i>LORE1</i> retrotransposon mutagenesis and highâ€throughput insertion detection in <i>Lotus japonicus</i> . Plant Journal, 2012, 69, 731-741.	5.7	149
28	Differential regulation of the Epr3 receptor coordinates membrane-restricted rhizobial colonization of root nodule primordia. Nature Communications, 2017, 8, 14534.	12.8	149
29	Cytokinin Induction of Root Nodule Primordia in <i>Lotus japonicus</i> Is Regulated by a Mechanism Operating in the Root Cortex. Molecular Plant-Microbe Interactions, 2011, 24, 1385-1395.	2.6	147
30	Receptor-mediated chitin perception in legume roots is functionally separable from Nod factor perception. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8118-E8127.	7.1	143
31	The Lotus japonicus LjSym4 Gene Is Required for the Successful Symbiotic Infection of Root Epidermal Cells. Molecular Plant-Microbe Interactions, 2000, 13, 1109-1120.	2.6	135
32	Dissection of Symbiosis and Organ Development by Integrated Transcriptome Analysis of Lotus japonicus Mutant and Wild-Type Plants. PLoS ONE, 2009, 4, e6556.	2.5	134
33	Genetic Diversity and Population Structure Analysis of European Hexaploid Bread Wheat (Triticum) Tj ETQq1 1 0	.784314 r 2.5	gB $_{13}^{\prime}$ Overla $_{3}^{\prime}$
34	Auxin distribution inLotus japonicusduring root nodule development. Plant Molecular Biology, 2003, 52, 1169-1180.	3.9	130
35	Interplay of flg22-induced defence responses and nodulation in Lotus japonicus. Journal of Experimental Botany, 2012, 63, 393-401.	4.8	130
36	Hairy roots? a short cut to transgenic root nodules. Plant Cell Reports, 1989, 8, 12-15.	5.6	129

#	Article	IF	CITATIONS
37	A combination of chitooligosaccharide and lipochitooligosaccharide recognition promotes arbuscular mycorrhizal associations in Medicago truncatula. Nature Communications, 2019, 10, 5047.	12.8	129
38	Transformation and regeneration of the legume Lotus corniculatus: A system for molecular studies of symbiotic nitrogen fixation. Molecular Genetics and Genomics, 1987, 207, 245-250.	2.4	125
39	An analysis of synteny of Arachis with Lotus and Medicago sheds new light on the structure, stability and evolution of legume genomes BMC Genomics, 2009, 10, 45.	2.8	125
40	Lotus Base: An integrated information portal for the model legume Lotus japonicus. Scientific Reports, 2016, 6, 39447.	3.3	124
41	Lotus japonicus: legume research in the fast lane. Trends in Plant Science, 2005, 10, 222-228.	8.8	123
42	The <i><scp>LORE</scp>1</i> insertion mutant resource. Plant Journal, 2016, 88, 306-317.	5.7	123
43	Mycorrhiza Mutants of Lotus japonicus Define Genetically Independent Steps During Symbiotic Infection. Molecular Plant-Microbe Interactions, 1998, 11, 933-936.	2.6	119
44	Evolution and Regulation of the <i>Lotus japonicus LysM Receptor</i> Gene Family. Molecular Plant-Microbe Interactions, 2010, 23, 510-521.	2.6	117
45	Conditional Requirement for Exopolysaccharide in the <i>Mesorhizobium–Lotus</i> Symbiosis. Molecular Plant-Microbe Interactions, 2013, 26, 319-329.	2.6	117
46	Two MicroRNAs Linked to Nodule Infection and Nitrogen-Fixing Ability in the Legume $\langle i \rangle$ Lotus japonicus $\langle i \rangle$ Â Â. Plant Physiology, 2012, 160, 2137-2154.	4.8	116
47	CERBERUS, a novel Uâ€box protein containing WDâ€40 repeats, is required for formation of the infection thread and nodule development in the legume– <i>Rhizobium</i> symbiosis. Plant Journal, 2009, 60, 168-180.	5.7	114
48	CYTOKININ OXIDASE/DEHYDROGENASE3 Maintains Cytokinin Homeostasis during Root and Nodule Development in <i>Lotus japonicus</i> . Plant Physiology, 2016, 170, 1060-1074.	4.8	112
49	The <i>Clavata2</i> genes of pea and <i>Lotus japonicus</i> affect autoregulation of nodulation. Plant Journal, 2011, 65, 861-871.	5.7	110
50	The Agrobacterium rhizogenes pRi TL-DNA segment as a gene vector system for transformation of plants. Molecular Genetics and Genomics, 1987, 207, 251-255.	2.4	104
51	Distinct roles of Lotus japonicus SYMRK and SYM15 in root colonization and arbuscule formation. New Phytologist, 2004, 163, 381-392.	7.3	102
52	The Pea <i>Sym37</i> Receptor Kinase Gene Controls Infection-Thread Initiation and Nodule Development. Molecular Plant-Microbe Interactions, 2008, 21, 1600-1608.	2.6	102
53	Different Pathways Act Downstream of the CEP Peptide Receptor CRA2 to Regulate Lateral Root and Nodule Development. Plant Physiology, 2016, 171, 2536-2548.	4.8	100
54	Cytokinin Biosynthesis Promotes Cortical Cell Responses during Nodule Development. Plant Physiology, 2017, 175, 361-375.	4.8	98

#	Article	IF	Citations
55	The Integral Membrane Protein SEN1 is Required for Symbiotic Nitrogen Fixation in Lotus japonicus Nodules. Plant and Cell Physiology, 2012, 53, 225-236.	3.1	95
56	Genetics of Symbiosis in Lotus japonicus: Recombinant Inbred Lines, Comparative Genetic Maps, and Map Position of 35 Symbiotic Loci. Molecular Plant-Microbe Interactions, 2006, 19, 80-91.	2.6	94
57	Spontaneous Root-Nodule Formation in the Model Legume Lotus japonicus: A Novel Class of Mutants Nodulates in the Absence of Rhizobia. Molecular Plant-Microbe Interactions, 2006, 19, 373-382.	2.6	94
58	PriFi: using a multiple alignment of related sequences to find primers for amplification of homologs. Nucleic Acids Research, 2005, 33, W516-W520.	14.5	90
59	Ligand-recognizing motifs in plant LysM receptors are major determinants of specificity. Science, 2020, 369, 663-670.	12.6	87
60	Legume Anchor Markers Link Syntenic Regions Between <i>Phaseolus vulgaris</i> , <i>Medicago truncatula</i> and Arachis. Genetics, 2008, 179, 2299-2312.	2.9	85
61	Eliminating vicine and convicine, the main anti-nutritional factors restricting faba bean usage. Trends in Food Science and Technology, 2019, 91, 549-556.	15.1	84
62	Dual requirement of the LjSym4 gene for mycorrhizal development in epidermal and cortical cells of Lotus japonicus roots. New Phytologist, 2002, 154, 741-749.	7.3	78
63	<i>Lotus japonicus ARPC1</i> Is Required for Rhizobial Infection Â. Plant Physiology, 2012, 160, 917-928.	4.8	78
64	The Proteome of Seed Development in the Model Legume <i>Lotus japonicus </i> Â Â Â. Plant Physiology, 2009, 149, 1325-1340.	4.8	76
65	A Genetic Linkage Map of the Model Legume <i>Lotus japonicus</i> and Strategies for Fast Mapping of New Loci. Genetics, 2002, 161, 1673-1683.	2.9	74
66	Intestinal microbiome adjusts the innate immune setpoint during colonization through negative regulation of MyD88. Nature Communications, 2018, 9, 4099.	12.8	73
67	The Ethylene Responsive Factor Required for Nodulation 1 (ERN1) Transcription Factor Is Required for Infection-Thread Formation in <i>Lotus japonicus</i> . Molecular Plant-Microbe Interactions, 2017, 30, 194-204.	2.6	72
68	Substrate-dependent negative selection in plants using a bacterial cytosine deaminase gene. Plant Journal, 1993, 3, 755-761.	5.7	68
69	The maize transposable element Ac is mobile in the legume Lotus japonicus. Plant Molecular Biology, 1995, 27, 981-993.	3.9	67
70	Iron and ferritin accumulate in separate cellular locations in Phaseolus seeds. BMC Plant Biology, 2010, 10, 26.	3.6	67
71	Gene targeting approaches using positive-negative selection and large flanking regions. Plant Molecular Biology, 1997, 35, 523-530.	3.9	65
72	Legume LysM receptors mediate symbiotic and pathogenic signalling. Current Opinion in Plant Biology, 2017, 39, 152-158.	7.1	64

#	Article	IF	Citations
73	Nodulation Gene Mutants of <i>Mesorhizobium loti</i> R7Aâ€" <i>nodZ</i> and <i>nolL</i> Mutants Have Host-Specific Phenotypes on <i>Lotus</i> spp Molecular Plant-Microbe Interactions, 2009, 22, 1546-1554.	2.6	62
74	Improved Characterization of Nod Factors and Genetically Based Variation in LysM Receptor Domains Identify Amino Acids Expendable for Nod Factor Recognition in <i>Lotus</i> spp Molecular Plant-Microbe Interactions, 2010, 23, 58-66.	2.6	62
75	Five phosphonate operon gene products as components of a multi-subunit complex of the carbon-phosphorus lyase pathway. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 11393-11398.	7.1	60
76	Keeping track of the growing number of biological functions of chitin and its interaction partners in biomedical research. Glycobiology, 2015, 25, 469-482.	2.5	58
77	LORE1, an active low-copy-number TY3-gypsy retrotransposon family in the model legume Lotus japonicus. Plant Journal, 2005, 44, 372-381.	5.7	56
78	Epidermal auxin biosynthesis facilitates rhizobial infection in <i>Lotus japonicus</i> . Plant Journal, 2018, 95, 101-111.	5.7	52
79	Common and not so common symbiotic entry. Trends in Plant Science, 2010, 15, 540-545.	8.8	51
80	Epidermal LysM receptor ensures robust symbiotic signalling in Lotus japonicus. ELife, 2018, 7, .	6.0	51
81	Regulation of Nod factor biosynthesis by alternative NodD proteins at distinct stages of symbiosis provides additional compatibility scrutiny. Environmental Microbiology, 2018, 20, 97-110.	3.8	50
82	Derepression of the Plant Chromovirus LORE1 Induces Germline Transposition in Regenerated Plants. PLoS Genetics, 2010, 6, e1000868.	3.5	48
83	Dynamics of Ethylene Production in Response to Compatible Nod Factor. Plant Physiology, 2018, 176, 1764-1772.	4.8	48
84	A general pipeline for the development of anchor markers for comparative genomics in plants. BMC Genomics, 2006, 7, 207.	2.8	47
85	Genetic Suppressors of the Lotus japonicus har 1-1 Hypernodulation Phenotype. Molecular Plant-Microbe Interactions, 2006, 19, 1082-1091.	2.6	45
86	Cooperative binding of LysM domains determines the carbohydrate affinity of a bacterial endopeptidase protein. FEBS Journal, 2014, 281, 1196-1208.	4.7	45
87	micro RNA 172 (miR172) signals epidermal infection and is expressed in cells primed for bacterial invasion in <i>Lotus japonicus</i> roots and nodules. New Phytologist, 2015, 208, 241-256.	7.3	45
88	Conserved regulation of the soybean early nodulin <i>ENOD2</i> gene promoter in determinate and indeterminate transgenic root nodules. Plant Journal, 1993, 3, 483-492.	5.7	43
89	Proliferating Floral Organs (Pfo), a Lotus japonicus gene required for specifying floral meristem determinacy and organ identity, encodes an F-box protein. Plant Journal, 2003, 33, 607-619.	5.7	43
90	Negative regulation of CCaMK is essential for symbiotic infection. Plant Journal, 2012, 72, 572-584.	5.7	43

#	Article	IF	Citations
91	Distinct Lotus japonicus Transcriptomic Responses to a Spectrum of Bacteria Ranging From Symbiotic to Pathogenic. Frontiers in Plant Science, 2018, 9, 1218.	3.6	43
92	Sinorhizobium fredii HH103 Invades Lotus burttii by Crack Entry in a Nod Factor–and Surface Polysaccharide–Dependent Manner. Molecular Plant-Microbe Interactions, 2016, 29, 925-937.	2.6	41
93	Hemoglobin LjGlb1-1 is involved in nodulation and regulates the level of nitric oxide in the ⟨i⟩Lotus japonicus–Mesorhizobium loti⟨/i⟩symbiosis. Journal of Experimental Botany, 2016, 67, 5275-5283.	4.8	41
94	A Set of Lotus japonicus Gifu x Lotus burttii Recombinant Inbred Lines Facilitates Map-based Cloning and QTL Mapping. DNA Research, 2012, 19, 317-323.	3.4	40
95	<i>Lotus japonicus Nuclear Factor YA1</i> , a nodule emergence stageâ€specific regulator of auxin signalling. New Phytologist, 2021, 229, 1535-1552.	7.3	39
96	Lotus burttii Takes a Position of the Third Corner in the Lotus Molecular Genetics Triangle. DNA Research, 2005, 12, 69-77.	3.4	38
97	An Unusual Intrinsically Disordered Protein from the Model Legume Lotus japonicus Stabilizes Proteins in Vitro. Journal of Biological Chemistry, 2008, 283, 31142-31152.	3.4	37
98	The K+-Dependent Asparaginase, NSE1, is Crucial for Plant Growth and Seed Production in Lotus japonicus. Plant and Cell Physiology, 2013, 54, 107-118.	3.1	37
99	Naturally occurring diversity helps to reveal genes of adaptive importance in legumes. Frontiers in Plant Science, 2015, 6, 269.	3.6	37
100	SNOWY COTYLEDON 2 Promotes Chloroplast Development and Has a Role in Leaf Variegation inÂBoth Lotus japonicus and Arabidopsis thaliana. Molecular Plant, 2017, 10, 721-734.	8.3	37
101	Insights into the evolution of symbiosis gene copy number and distribution from a chromosome-scale <i>Lotus japonicus</i> Gifu genome sequence. DNA Research, 2020, 27, .	3.4	35
102	Proteome Analysis of Pod and Seed Development in the Model Legume <i>Lotus japonicus</i> . Journal of Proteome Research, 2010, 9, 5715-5726.	3.7	34
103	An intermolecular binding mechanism involving multiple LysM domains mediates carbohydrate recognition by an endopeptidase. Acta Crystallographica Section D: Biological Crystallography, 2015, 71, 592-605.	2.5	34
104	VC1 catalyses a key step in the biosynthesis of vicine in faba bean. Nature Plants, 2021, 7, 923-931.	9.3	34
105	Fusions between green fluorescent protein and beta-glucuronidase as sensitive and vital bifunctional reporters in plants. Plant Molecular Biology, 1998, 37, 715-727.	3.9	33
106	Analysis of Promoter Activity of the Early Nodulin Enod40 in Lotus japonicus. Molecular Plant-Microbe Interactions, 2005, 18, 414-427.	2.6	32
107	Structures of Exopolysaccharides Involved in Receptor-mediated Perception of Mesorhizobium loti by Lotus japonicus. Journal of Biological Chemistry, 2016, 291, 20946-20961.	3.4	32
108	Fusions between green fluorescent protein and beta-glucuronidase as sensitive and vital bifunctional reporters in plants. Plant Molecular Biology, 1998, 38, 861-873.	3.9	31

#	Article	IF	Citations
109	Crystal structure of the TLDc domain of oxidation resistance protein 2 from zebrafish. Proteins: Structure, Function and Bioinformatics, 2012, 80, 1694-1698.	2.6	31
110	Structural signatures in EPR3 define a unique class of plant carbohydrate receptors. Nature Communications, 2020, $11,3797$.	12.8	31
111	Extreme genetic signatures of local adaptation during Lotus japonicus colonization of Japan. Nature Communications, 2020, $11,253$.	12.8	30
112	Lotus japonicus SUNERGOS 1 encodes a predicted subunit A of a DNA topoisomerase VI that is required for nodule differentiation and accommodation of rhizobial infection. Plant Journal, 2014, 78, 811-821.	5.7	28
113	Atypical Receptor Kinase RINRK1 Required for Rhizobial Infection But Not Nodule Development in <i>Lotus japonicus (i). Plant Physiology, 2019, 181, 804-816.</i>	4.8	28
114	A <i>Lotus japonicus</i> cytoplasmic kinase connects Nod factor perception by the NFR5 LysM receptor to nodulation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 14339-14348.	7.1	28
115	Characterizing standard genetic parts and establishing common principles for engineering legume and cereal roots. Plant Biotechnology Journal, 2019, 17, 2234-2245.	8.3	28
116	Nitrate restricts nodule organogenesis through inhibition of cytokinin biosynthesis in Lotus japonicus. Nature Communications, 2021, 12, 6544.	12.8	28
117	GeMprospector-online design of cross-species genetic marker candidates in legumes and grasses. Nucleic Acids Research, 2006, 34, W670-W675.	14.5	27
118	<i>shortran</i> : a pipeline for small RNA-seq data analysis. Bioinformatics, 2012, 28, 2698-2700.	4.1	27
119	Combined N-Glycome and N-Glycoproteome Analysis of the <i>Lotus japonicus</i> Seed Globulin Fraction Shows Conservation of Protein Structure and Glycosylation in Legumes. Journal of Proteome Research, 2013, 12, 3383-3392.	3.7	27
120	LYS12 LysM receptor deceleratesPhytophthora palmivoradisease progression inLotus japonicus. Plant Journal, 2018, 93, 297-310.	5.7	26
121	Distinct signaling routes mediate intercellular and intracellular rhizobial infection in <i>Lotus japonicus</i> . Plant Physiology, 2021, 185, 1131-1147.	4.8	26
122	<i>N</i> â€glycan maturation mutants in <i>Lotus japonicus</i> for basic and applied glycoprotein research. Plant Journal, 2017, 91, 394-407.	5.7	25
123	Altered Plant and Nodule Development and Protein S-Nitrosylation in Lotus japonicus Mutants Deficient in S-Nitrosoglutathione Reductases. Plant and Cell Physiology, 2020, 61, 105-117.	3.1	25
124	Agrobacterium rhizogenes as a Vector for Transforming Higher Plants: Application in Lotus corniculatus Transformation., 1995, 49, 49-62.		24
125	Sinorhizobium fredii HH103 nolR and nodD2 mutants gain capacity for infection thread invasion of Lotus japonicus Gifu and Lotus burttii. Environmental Microbiology, 2019, 21, 1718-1739.	3.8	24
126	Transposition of a 600 thousand-year-old LTR retrotransposon in the model legume LotusÂjaponicus. Plant Molecular Biology, 2008, 68, 653-663.	3.9	23

#	Article	IF	Citations
127	Kinetic proofreading of lipochitooligosaccharides determines signal activation of symbiotic plant receptors. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	23
128	Evaluation of yield, yield stability, and yield–protein relationship in 17 commercial faba bean cultivars. , 2020, 2, e39.		22
129	Proteome reference maps of the <i>Lotus japonicus</i> nodule and root. Proteomics, 2014, 14, 230-240.	2.2	21
130	Spatial and temporal expression patterns of chitinase genes in developing zebrafish embryos. Gene Expression Patterns, 2014, 14, 69-77.	0.8	19
131	The deubiquitinating enzyme <scp>AMSH</scp> 1 is required for rhizobial infection and nodule organogenesis in <i>Lotus japonicus</i> . Plant Journal, 2015, 83, 719-731.	5.7	19
132	Transgenic Plants: Agrobacterium-Mediated Transformation of the Diploid Legume Lotus japonicus. , 1994, , 119-127.		17
133	A Toolkit for High Resolution Imaging of Cell Division and Phytohormone Signaling in Legume Roots and Root Nodules. Frontiers in Plant Science, 2019, 10, 1000.	3.6	17
134	Molecular Mechanisms of Intercellular Rhizobial Infection: Novel Findings of an Ancient Process. Frontiers in Plant Science, 0, 13, .	3.6	17
135	Lotus genome: pod of gold for legume research. Trends in Plant Science, 2008, 13, 515-517.	8.8	16
136	A genetic screen for plant mutants with altered nodulation phenotypes in response to rhizobial glycan mutants. New Phytologist, 2018, 220, 526-538.	7.3	14
137	Lotus japonicus's a model system. , 2005, , 3-24.		14
138	Chemically Synthesized 58â€mer LysM Domain Binds Lipochitin Oligosaccharide. ChemBioChem, 2014, 15, 2097-2105.	2.6	13
139	Chromosomal regions associated with the <i>in vitro</i> culture response of wheat (<i><scp>T</scp>riticum aestivum </i> <scp>L</scp> .) microspores. Plant Breeding, 2015, 134, 255-263.	1.9	13
140	Micro-PIXE investigation of bean seeds to assist micronutrient biofortification. Nuclear Instruments & Methods in Physics Research B, 2011, 269, 2297-2302.	1.4	12
141	Preparation of glycoconjugates from unprotected carbohydrates for protein-binding studies. Nature Protocols, 2017, 12, 2411-2422.	12.0	12
142	High-Throughput and Targeted Genotyping of Lotus japonicus LORE1 Insertion Mutants. Methods in Molecular Biology, 2013, 1069, 119-146.	0.9	12
143	Lipochitin Oligosaccharides Immobilized through Oximes in Glycan Microarrays Bind LysM Proteins. ChemBioChem, 2014, 15, 425-434.	2.6	10
144	Inoculation insensitive promoters for cell type enriched gene expression in legume roots and nodules. Plant Methods, 2016, 12, 4.	4.3	9

#	Article	IF	CITATIONS
145	High-resolution genetic maps of Lotus japonicus and L. burttiibased on re-sequencing of recombinant inbred lines. DNA Research, 2016, 23, 487-494.	3.4	8
146	Agrobacterium rhizogenes pRi TL-DNA integration system: a gene vector for Lotus japonicus transformation. , 2005, , 285-287.		8
147	Natural variation identifies a <i>Pxy</i> gene controlling vascular organisation and formation of nodules and lateral roots in <i>Lotus japonicus</i> New Phytologist, 2021, 230, 2459-2473.	7.3	7
148	Substrate-dependent negative selection in plants using a bacterial cytosine deaminase gene. Plant Journal, 1993, 3, 755-761.	5.7	7
149	Activation of an Endogenous Retrotransposon Associated with Epigenetic Changes in <i>Lotus japonicus </i> : A Tool for Functional Genomics in Legumes. Plant Genome, 2013, 6, plantgenome 2013.04.0009.	2.8	6
150	Transformation-regeneration procedure for Lotus japonicus. , 2005, , 279-284.		6
151	Report of false positives when using zymography to assess peptidoglycan hydrolytic activity of an endopeptidase with multiple LysM domains. Biochimie, 2020, 177, 25-29.	2.6	4
152	Three classes of hemoglobins are required for optimal vegetative and reproductive growth of <i>Lotus japonicus</i> : genetic and biochemical characterization of LjGlb2-1. Journal of Experimental Botany, 2021, 72, 7778-7791.	4.8	4
153	Mapping and map-based cloning. , 2005, , 217-232.		4
154	Infection of Lotus japonicus Roots by Mesorhizobium loti. Signaling and Communication in Plants, 2012, , 31-50.	0.7	4
155	Cloning, expression, purification, crystallization and preliminary crystallographic analysis of the putative NlpC/P60 endopeptidase, TTHA0266, fromThermus thermophilusHB8. Acta Crystallographica Section F: Structural Biology Communications, 2013, 69, 1291-1294.	0.7	2
156	User Guide for the LORE1 Insertion Mutant Resource. Methods in Molecular Biology, 2017, 1610, 13-23.	0.9	2
157	The Lotus japonicus AFB6 Gene Is Involved in the Auxin Dependent Root Developmental Program. International Journal of Molecular Sciences, 2021, 22, 8495.	4.1	2
158	Background and History of the Lotus japonicus Model Legume System. Compendium of Plant Genomes, 2014, , 3-8.	0.5	2
159	Ds gene-tagging. , 2005, , 211-215.		1
160	Use of GFP to Study Factors Involved in the Lotus japonicus Symbiosis. , 2000, , 219-222.		1
161	Lotus japonicus. Current Biology, 2022, 32, R149-R150.	3.9	1
162	Title is missing!. Plant Molecular Biology, 1998, 38, 917-917.	3.9	0

#	Article	IF	CITATIONS
163	Receptor Kinases Mediating Early Symbiotic Signalling. Signaling and Communication in Plants, 2012, , 93-107.	0.7	o
164	Recent Advances in the Molecular Genetics of The Model Legume Lotus japonicus. , 1997, , 255-258.		0