Pablo S Aguilar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6851287/publications.pdf

Version: 2024-02-01

257450 330143 2,789 45 24 37 citations g-index h-index papers 48 48 48 3051 docs citations times ranked citing authors all docs

#	Article	lF	Citations
1	Discovery of archaeal fusexins homologous to eukaryotic HAP2/GCS1 gamete fusion proteins. Nature Communications, 2022, 13, .	12.8	17
2	High rates of calcium-free diffusion in the cytosol of living cells. Biophysical Journal, 2021, 120, 3960-3972.	0.5	7
3	Scalable phylogenetic profiling using MinHash uncovers likely eukaryotic sexual reproduction genes. PLoS Computational Biology, 2020, 16, e1007553.	3.2	19
4	Scalable phylogenetic profiling using MinHash uncovers likely eukaryotic sexual reproduction genes. , 2020, 16, e1007553.		0
5	Scalable phylogenetic profiling using MinHash uncovers likely eukaryotic sexual reproduction genes. , 2020, 16, e1007553.		O
6	Scalable phylogenetic profiling using MinHash uncovers likely eukaryotic sexual reproduction genes. , 2020, 16, e1007553.		0
7	Scalable phylogenetic profiling using MinHash uncovers likely eukaryotic sexual reproduction genes. , 2020, 16, e1007553.		O
8	Scalable phylogenetic profiling using MinHash uncovers likely eukaryotic sexual reproduction genes. , 2020, 16, e1007553.		0
9	Genomic and Transcriptomic Basis of Hanseniaspora vineae's Impact on Flavor Diversity and Wine Quality. Applied and Environmental Microbiology, 2019, 85, .	3.1	51
10	Overproduction of isoprenoids by Saccharomyces cerevisiae in a synthetic grape juice medium in the absence of plant genes. International Journal of Food Microbiology, 2018, 282, 42-48.	4.7	12
11	<i>Arabidopsis</i> HAP2/GCS1 is a gamete fusion protein homologous to somatic and viral fusogens. Journal of Cell Biology, 2017, 216, 571-581.	5.2	93
12	Sexual pheromone modulates the frequency of cytosolic Ca ²⁺ bursts in <i>Saccharomyces cerevisiae</i> . Molecular Biology of the Cell, 2017, 28, 501-510.	2.1	26
13	Similarity Measure for Cell Membrane Fusion Proteins Identification. Lecture Notes in Computer Science, 2017, , 257-265.	1.3	O
14	<i>De Novo</i> Synthesis of Benzenoid Compounds by the Yeast <i>Hanseniaspora vineae</i> Increases the Flavor Diversity of Wines. Journal of Agricultural and Food Chemistry, 2016, 64, 4574-4583.	5.2	46
15	A New Class of Thioredoxinâ€Related Protein Able to Bind Iron–Sulfur Clusters. Antioxidants and Redox Signaling, 2016, 24, 205-216.	5.4	8
16	Quantitation of yeast cell–cell fusion using multicolor flow cytometry. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2015, 87, 843-854.	1.5	3
17	Eisosomes Are Dynamic Plasma Membrane Domains Showing Pil1-Lsp1 Heteroligomer Binding Equilibrium. Biophysical Journal, 2015, 108, 1633-1644.	0.5	24
18	Yeast diversity and native vigor for flavor phenotypes. Trends in Biotechnology, 2015, 33, 148-154.	9.3	82

#	Article	IF	CITATIONS
19	Genome Sequence of the Native Apiculate Wine Yeast <i>Hanseniaspora vineae</i> T02/19AF. Genome Announcements, 2014, 2, .	0.8	30
20	Allosteric Activation of Bacterial Response Regulators: the Role of the Cognate Histidine Kinase Beyond Phosphorylation. MBio, 2014, 5, e02105.	4.1	50
21	Eisosomes and Plasma Membrane Domain Formation. Biophysical Journal, 2014, 106, 465a-466a.	0.5	O
22	FigA, a Putative Homolog of Low-Affinity Calcium System Member Fig1 in Saccharomyces cerevisiae, Is Involved in Growth and Asexual and Sexual Development in Aspergillus nidulans. Eukaryotic Cell, 2014, 13, 295-303.	3.4	29
23	An image analysis method to quantify CFTR subcellular localization. Molecular and Cellular Probes, 2014, 28, 175-180.	2.1	1
24	Eisosomes and Plasma Membrane Organization. Biophysical Journal, 2013, 104, 246a.	0.5	1
25	Genetic basis of cell–cell fusion mechanisms. Trends in Genetics, 2013, 29, 427-437.	6.7	199
26	Eisosomes and plasma membrane organization. Molecular Genetics and Genomics, 2012, 287, 607-620.	2.1	33
27	The eisosome core is composed of BAR domain proteins. Molecular Biology of the Cell, 2011, 22, 2360-2372.	2.1	91
28	A plasma-membrane E-MAP reveals links of the eisosome with sphingolipid metabolism and endosomal trafficking. Nature Structural and Molecular Biology, 2010, 17, 901-908.	8.2	93
29	Structure of sterol aliphatic chains affects yeast cell shape and cell fusion during mating. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 4170-4175.	7.1	53
30	The Yeast Cell Fusion Protein Prm1p Requires Covalent Dimerization to Promote Membrane Fusion. PLoS ONE, 2010, 5, e10593.	2.5	9
31	Pil1 Controls Eisosome Biogenesis. Molecular Biology of the Cell, 2009, 20, 809-818.	2.1	62
32	A genome-wide screen for genes affecting eisosomes reveals Nce102 function in sphingolipid signaling. Journal of Cell Biology, 2009, 185, 1227-1242.	5. 2	123
33	Oxidative stress and chronological aging in glycogen-phosphorylase-deleted yeast. Free Radical Biology and Medicine, 2008, 45, 1446-1456.	2.9	46
34	The Plasma Membrane Proteins Prm1 and Fig1 Ascertain Fidelity of Membrane Fusion during Yeast Mating. Molecular Biology of the Cell, 2007, 18, 547-556.	2.1	87
35	Pkh-kinases control eisosome assembly and organization. EMBO Journal, 2007, 26, 4946-4955.	7.8	117
36	Control of fatty acid desaturation: a mechanism conserved from bacteria to humans. Molecular Microbiology, 2006, 62, 1507-1514.	2.5	157

#	Article	IF	CITATION
37	Eisosomes mark static sites of endocytosis. Nature, 2006, 439, 998-1003.	27.8	304
38	Regulation of fatty acid desaturation in Bacillus subtilis. Prostaglandins Leukotrienes and Essential Fatty Acids, 2003, 68, 187-190.	2.2	15
39	The Bacillus subtilis Acyl Lipid Desaturase Is a î"5 Desaturase. Journal of Bacteriology, 2003, 185, 3228-3231.	2.2	76
40	Mechanism of membrane fluidity optimization: isothermal control of the ⟨i⟩Bacillus subtilis⟨/i⟩ acylâ€ipid desaturase. Molecular Microbiology, 2002, 45, 1379-1388.	2.5	113
41	Glutamate activates PP125FAKthrough AMPA/kainate receptors in Bergmann glia. Journal of Neuroscience Research, 2001, 66, 723-729.	2.9	16
42	Molecular basis of thermosensing: a two-component signal transduction thermometer in Bacillus subtilis. EMBO Journal, 2001, 20, 1681-1691.	7.8	353
43	Transcriptional Control of the Low-Temperature-Inducible <i>des</i> Gene, Encoding the î"5 Desaturase of <i>Bacillus subtilis</i> Journal of Bacteriology, 1999, 181, 7028-7033.	2.2	80
44	A <i>Bacillus subtilis (i) Gene Induced by Cold Shock Encodes a Membrane Phospholipid Desaturase. Journal of Bacteriology, 1998, 180, 2194-2200.</i>	2.2	222
45	Biosynthesis and Function of Membrane Lipids. , 0, , 43-55.		35