Valeria Paola Prigione

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6851230/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Low density polyethylene degradation by filamentous fungi. Environmental Pollution, 2021, 274, 116548.	7.5	52
2	Corollospora mediterranea: A Novel Species Complex in the Mediterranean Sea. Applied Sciences (Switzerland), 2021, 11, 5452.	2.5	9
3	Insights on Lulworthiales Inhabiting the Mediterranean Sea and Description of Three Novel Species of the Genus Paralulworthia. Journal of Fungi (Basel, Switzerland), 2021, 7, 940.	3.5	7
4	Special Issue on Discovery and Research on Aquatic Microorganisms. Applied Sciences (Switzerland), 2021, 11, 11973.	2.5	0
5	Genome Sequence of Trichoderma lixii MUT3171, A Promising Strain for Mycoremediation of PAH-Contaminated Sites. Microorganisms, 2020, 8, 1258.	3.6	18
6	Shed Light in the DaRk LineagES of the Fungal Tree of Life—STRES. Life, 2020, 10, 362.	2.4	16
7	News from the Sea: A New Genus and Seven New Species in the Pleosporalean Families Roussoellaceae and Thyridariaceae. Diversity, 2020, 12, 144.	1.7	20
8	Fungal Diversity in the Neptune Forest: Comparison of the Mycobiota of Posidonia oceanica, Flabellia petiolata, and Padina pavonica. Frontiers in Microbiology, 2020, 11, 933.	3.5	13
9	Wastewater-Agar as a selection environment: A first step towards a fungal in-situ bioaugmentation strategy. Ecotoxicology and Environmental Safety, 2019, 171, 443-450.	6.0	6
10	The culturable mycobiota associated with the Mediterranean sponges <i>Aplysina cavernicola</i> , <i>Crambe crambe</i> and <i>Phorbas tenacior</i> . FEMS Microbiology Letters, 2019, 366, .	1.8	5
11	Degradative properties of two newly isolated strains of the ascomycetes Fusarium oxysporum and Lecanicillium aphanocladii. International Microbiology, 2019, 22, 103-110.	2.4	13
12	Elbamycella rosea gen. et sp. nov. (Juncigenaceae, Torpedosporales) isolated from the Mediterranean Sea. MycoKeys, 2019, 55, 15-28.	1.9	4
13	Tannery mixed liquors from an ecotoxicological and mycological point of view: Risks vs potential biodegradation application. Science of the Total Environment, 2018, 627, 835-843.	8.0	14
14	Fungi from industrial tannins: potential application in biotransformation and bioremediation of tannery wastewaters. Applied Microbiology and Biotechnology, 2018, 102, 4203-4216.	3.6	16
15	The effects of book disinfection to the airborne microbiological community in a library environment. Aerobiologia, 2018, 34, 29-44.	1.7	10
16	Biotransformation of industrial tannins by filamentous fungi. Applied Microbiology and Biotechnology, 2018, 102, 10361-10375.	3.6	28
17	Basidiomycota isolated from the Mediterranean Sea – Phylogeny and putative ecological roles. Fungal Ecology, 2018, 36, 51-62.	1.6	20
18	The culturable mycobiota of a Mediterranean marine site after an oil spill: isolation, identification and potential application in bioremediation. Science of the Total Environment, 2017, 576, 310-318.	8.0	100

VALERIA PAOLA PRIGIONE

#	Article	IF	CITATIONS
19	The culturable mycobiota of Flabellia petiolata: First survey of marine fungi associated to a Mediterranean green alga. PLoS ONE, 2017, 12, e0175941.	2.5	59
20	Influence of plant genotype on the cultivable fungiÂassociated to tomato rhizosphere and roots in different soils. Fungal Biology, 2016, 120, 862-872.	2.5	39
21	The extreme environment of a library: Xerophilic fungi inhabiting indoor niches. International Biodegradation, 2015, 99, 1-7.	3.9	88
22	Mycological and ecotoxicological characterisation of landfill leachate before and after traditional treatments. Science of the Total Environment, 2014, 487, 335-341.	8.0	50
23	Fungal Waste-Biomasses as Potential Low-Cost Biosorbents for Decolorization of Textile Wastewaters. Water (Switzerland), 2012, 4, 770-784.	2.7	14
24	Influence of Culture Medium on Fungal Biomass Composition and Biosorption Effectiveness. Current Microbiology, 2012, 64, 50-59.	2.2	14
25	Cunninghamella elegans biomass optimisation for textile wastewater biosorption treatment: an analytical and ecotoxicological approach. Applied Microbiology and Biotechnology, 2011, 90, 343-352.	3.6	25
26	Survey of ectomycorrhizal, litter-degrading, and wood-degrading Basidiomycetes for dye decolorization and ligninolytic enzyme activity. Antonie Van Leeuwenhoek, 2010, 98, 483-504.	1.7	29
27	Industrial dye degradation and detoxification by basidiomycetes belonging to different eco-physiological groups. Journal of Hazardous Materials, 2010, 177, 260-267.	12.4	28
28	Fungal Biosorption, An Innovative Treatment for the Decolourisation and Detoxification of Textile Effluents. Water (Switzerland), 2010, 2, 550-565.	2.7	37
29	Decolourisation of model and industrial dyes by mitosporic fungi in different culture conditions. World Journal of Microbiology and Biotechnology, 2009, 25, 1363-1374.	3.6	19
30	Chromium removal from a real tanning effluent by autochthonous and allochthonous fungi. Bioresource Technology, 2009, 100, 2770-2776.	9.6	82
31	Pyrene degradation and detoxification in soil by a consortium of basidiomycetes isolated from compost: Role of laccases and peroxidases. Journal of Hazardous Materials, 2009, 165, 1229-1233.	12.4	77
32	Biosorption of simulated dyed effluents by inactivated fungal biomasses. Bioresource Technology, 2008, 99, 3559-3567.	9.6	69
33	Decolourisation and detoxification of textile effluents by fungal biosorption. Water Research, 2008, 42, 2911-2920.	11.3	92
34	Nucleus size in the host cells of an Arbuscular Mycorrhizal system: a mathematical approach to estimate the role of ploidy and chromatin condensation. Caryologia, 2005, 58, 112-121.	0.3	4
35	Development and Use of Flow Cytometry for Detection of Airborne Fungi. Applied and Environmental Microbiology, 2004, 70, 1360-1365.	3.1	53
36	Methods to maximise the staining of fungal propagules with fluorescent dyes. Journal of Microbiological Methods, 2004, 59, 371-379.	1.6	16