Vincenzo Pavone

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/685117/publications.pdf

Version: 2024-02-01

190 papers 7,422 citations

43 h-index 71685 76 g-index

195 all docs

195
docs citations

195 times ranked 4658 citing authors

#	Article	IF	CITATIONS
1	Oxidative dehalogenation of trichlorophenol catalyzed by a promiscuous artificial heme-enzyme. RSC Advances, 2022, 12, 12947-12956.	3.6	9
2	Pharmacokinetics of the Urokinase Receptor-Derived Peptide UPARANT After Single and Multiple Doses Administration in Rats. European Journal of Drug Metabolism and Pharmacokinetics, 2021, 46, 119-128.	1.6	O
3	Histidine orientation in artificial peroxidase regioisomers as determined by paramagnetic NMR shifts. Chemical Communications, 2021, 57, 990-993.	4.1	7
4	Highly Selective Indole Oxidation Catalyzed by a Mn-Containing Artificial Mini-Enzyme. ACS Catalysis, 2021, 11, 9407-9417.	11.2	22
5	Unravelling the Structure of the Tetrahedral Metal-Binding Site in METP3 through an Experimental and Computational Approach. Molecules, 2021, 26, 5221.	3.8	2
6	Mimochrome, a metalloporphyrinâ€based catalytic Swiss knifeâ€. Biotechnology and Applied Biochemistry, 2020, 67, 495-515.	3.1	26
7	Gaining insight on mitigation of rubeosis iridis by UPARANT in a mouse model associated with proliferative retinopathy. Journal of Molecular Medicine, 2020, 98, 1629-1638.	3.9	2
8	Clickable artificial hemeâ€peroxidases for the development of functional nanomaterials. Biotechnology and Applied Biochemistry, 2020, 67, 549-562.	3.1	8
9	COVID-19 and pneumonia: a role for the uPA/uPAR system. Drug Discovery Today, 2020, 25, 1528-1534.	6.4	62
10	Use of an Artificial Miniaturized Enzyme in Hydrogen Peroxide Detection by Chemiluminescence. Sensors, 2020, 20, 3793.	3.8	22
11	The uPAR System as a Potential Therapeutic Target in the Diseased Eye. Cells, 2019, 8, 925.	4.1	11
12	The urokinaseâ€type plasminogen activator system as drug target in retinitis pigmentosa: New preâ€clinical evidence in the rd10 mouse model. Journal of Cellular and Molecular Medicine, 2019, 23, 5176-5192.	3.6	14
13	Engineering Metalloprotein Functions in Designed and Native Scaffolds. Trends in Biochemical Sciences, 2019, 44, 1022-1040.	7.5	76
14	UPARANT is an effective antiangiogenic agent in a mouse model of rubeosis iridis. Journal of Molecular Medicine, 2019, 97, 1273-1283.	3.9	5
15	Oocyte provision as a (quasi) social market: Insights from Spain. Social Science and Medicine, 2019, 234, 112381.	3.8	12
16	Inhibiting the urokinaseâ€type plasminogen activator receptor system recovers <scp>STZ</scp> â€induced diabetic nephropathy. Journal of Cellular and Molecular Medicine, 2019, 23, 1034-1049.	3.6	22
17	Mn-Mimochrome VI*a: An Artificial Metalloenzyme With Peroxygenase Activity. Frontiers in Chemistry, 2018, 6, 590.	3.6	23
18	Artificial Heme Enzymes for the Construction of Gold-Based Biomaterials. International Journal of Molecular Sciences, 2018, 19, 2896.	4.1	16

#	Article	IF	Citations
19	Hydrogen evolution from water catalyzed by cobalt-mimochrome VI*a, a synthetic mini-protein. Chemical Science, 2018, 9, 8582-8589.	7.4	71
20	Exploring the role of unnatural amino acids in antimicrobial peptides. Scientific Reports, 2018, 8, 8888.	3.3	76
21	Enhancement of Peroxidase Activity in Artificial Mimochrome VI Catalysts through Rational Design. ChemBioChem, 2018, 19, 1823-1826.	2.6	38
22	Selecting What? Pre-implantation Genetic Diagnosis and Screening Trajectories in Spain., 2018, , 123-148.		1
23	Inflammation and N-formyl peptide receptors mediate the angiogenic activity of human vitreous humour in proliferative diabetic retinopathy. Diabetologia, 2017, 60, 719-728.	6.3	33
24	Preclinical evaluation of the urokinase receptor-derived peptide UPARANT as an anti-inflammatory drug. Inflammation Research, 2017, 66, 701-709.	4.0	11
25	A De Novo Heterodimeric Dueâ€Ferri Protein Minimizes the Release of Reactive Intermediates in Dioxygenâ€Dependent Oxidation. Angewandte Chemie - International Edition, 2017, 56, 15580-15583.	13.8	33
26	A De Novo Heterodimeric Dueâ€Ferri Protein Minimizes the Release of Reactive Intermediates in Dioxygenâ€Dependent Oxidation. Angewandte Chemie, 2017, 129, 15786-15786.	2.0	5
27	Nano-in-Nano Approach for Enzyme Immobilization Based on Block Copolymers. ACS Applied Materials & Samp; Interfaces, 2017, 9, 29318-29327.	8.0	22
28	A Quartz Crystal Microbalance Immunosensor for Stem Cell Selection and Extraction. Sensors, 2017, 17, 2747.	3.8	21
29	Diabetic Retinopathy in the Spontaneously Diabetic Torii Rat: Pathogenetic Mechanisms and Preventive Efficacy of Inhibiting the Urokinase-Type Plasminogen Activator Receptor System. Journal of Diabetes Research, 2017, 2017, 1-18.	2.3	17
30	The Urokinase Receptor-Derived Peptide UPARANT Recovers Dysfunctional Electroretinogram and Blood–Retinal Barrier Leakage in a Rat Model of Diabetes. , 2017, 58, 3138.		14
31	Bio-Identification, Value Creation and the Reproductive Bioeconomy: Insights from the Reprogenetics Sector in Spain., 2017,, 129-159.		1
32	Molecular Mechanisms Mediating Antiangiogenic Action of the Urokinase Receptor-Derived Peptide UPARANT in Human Retinal Endothelial Cells., 2016, 57, 5723.		19
33	The Urokinase Receptor-Derived Peptide UPARANT Mitigates Angiogenesis in a Mouse Model of Laser-Induced Choroidal Neovascularization. , 2016, 57, 2600.		23
34	A Systemic Approach to Security: Beyond the Tradeoff between Security and Liberty. Democracy and Security, 2016, 12, 225-246.	0.6	17
35	Artificial Diiron Enzymes with a De Novo Designed Fourâ€Helix Bundle Structure. European Journal of Inorganic Chemistry, 2015, 2015, 3371-3390.	2.0	65
36	Cisgenics as emerging bio-objects: bio-objectification and bio-identification in agrobiotech innovation. New Genetics and Society, 2015, 34, 52-71.	1.2	14

#	Article	IF	Citations
37	An artificial heme-enzyme with enhanced catalytic activity: evolution, functional screening and structural characterization. Organic and Biomolecular Chemistry, 2015, 13, 4859-4868.	2.8	38
38	Branched porphyrins as functional scaffolds for multisite bioconjugation. Biotechnology and Applied Biochemistry, 2015, 62, 383-392.	3.1	4
39	The Bioeconomy as Political Project. Science Technology and Human Values, 2015, 40, 302-337.	3.1	114
40	Crystal structure of an amphiphilic foldamer reveals a 48-mer assembly comprising a hollow truncated octahedron. Nature Communications, 2014, 5, 3581.	12.8	14
41	UPARANT: A Urokinase Receptor–Derived Peptide Inhibitor of VEGF-Driven Angiogenesis with Enhanced Stability and <i>In Vitro</i> and <i>In Vivo</i> Potency. Molecular Cancer Therapeutics, 2014, 13, 1092-1104.	4.1	39
42	Artificial heme-proteins: determination of axial ligand orientations through paramagnetic NMR shifts. Chemical Communications, 2014, 50, 3852-3855.	4.1	14
43	Evaluation of the oligosaccharide composition of commercial follicle stimulating hormone preparations. Electrophoresis, 2013, 34, 2394-2406.	2.4	18
44	Democratising research evaluation: Achieving greater public engagement with bibliometrics-informed peer review. Science and Public Policy, 2013, 40, 563-575.	2.4	36
45	Bio-objects' political capacity: a research agenda. Croatian Medical Journal, 2013, 54, 206-211.	0.7	8
46	A Urokinase Receptor–Derived Peptide Inhibiting VEGF-Dependent Directional Migration and Vascular Sprouting. Molecular Cancer Therapeutics, 2013, 12, 1981-1993.	4.1	29
47	Public assessment of new surveillance-oriented security technologies: Beyond the trade-off between privacy and security. Public Understanding of Science, 2012, 21, 556-572.	2.8	7 5
48	De Novo Design, Synthesis and Characterisation of MP3, A New Catalytic Fourâ€Helix Bundle Hemeprotein. Chemistry - A European Journal, 2012, 18, 15960-15971.	3.3	32
49	Single Amino Acid Substitutions in the Chemotactic Sequence of Urokinase Receptor Modulate Cell Migration and Invasion. PLoS ONE, 2012, 7, e44806.	2.5	24
50	Beyond the Geneticization Thesis. Science Technology and Human Values, 2012, 37, 235-261.	3.1	29
51	From risk assessment to in-context trajectory evaluation - GMOs and their social implications. Environmental Sciences Europe, 2011, 23, .	11.0	32
52	A Heme–Peptide Metalloenzyme Mimetic with Natural Peroxidase‣ike Activity. Chemistry - A European Journal, 2011, 17, 4444-4453.	3.3	68
53	Molecular engineering of RANTES peptide mimetics with potent antiâ€HIVâ€1 activity. FASEB Journal, 2011, 25, 1230-1243.	0.5	21
54	Spectroscopic and metal-binding properties of DF3: an artificial protein able to accommodate different metal ions. Journal of Biological Inorganic Chemistry, 2010, 15, 717-728.	2.6	29

#	Article	IF	CITATIONS
55	A FRET-based biosensor for NO detection. Journal of Inorganic Biochemistry, 2010, 104, 619-624.	3.5	24
56	The soluble form of urokinase receptor promotes angiogenesis through its Ser88â€Argâ€Serâ€Argâ€Tyr92 chemotactic sequence. Journal of Thrombosis and Haemostasis, 2010, 8, 2789-2799.	3.8	41
57	Redox and Electrocatalytic Properties of Mimochrome VI, a Synthetic Heme Peptide Adsorbed on Gold. Langmuir, 2010, 26, 17831-17835.	3.5	27
58	Structure-based design of an urokinase-type plasminogen activator receptor–derived peptide inhibiting cell migration and lung metastasis. Molecular Cancer Therapeutics, 2009, 8, 2708-2717.	4.1	47
59	Bioorganic stereochemistry. A study of the peptide oxazolones from Z-(Aib)n-OH (n = 2-4) in the solid state*. International Journal of Peptide and Protein Research, 2009, 22, 603-610.	0.1	19
60	Structure-toxicity relationships in the amatoxin series Synthesis of S-deoxy[$\hat{l}^3(R)$ -hydroxy-lle3]-amaninamide, its crystal and molecular structure and inhibitory efficiency* \hat{A} §. International Journal of Peptide and Protein Research, 2009, 34, 222-228.	0.1	27
61	An artificial di-iron oxo-protein with phenol oxidase activity. Nature Chemical Biology, 2009, 5, 882-884.	8.0	170
62	What do civil society organisations expect from participation in science? Lessons from Germany and Spain on the issue of GMOs. Science and Public Policy, 2009, 36, 287-299.	2.4	27
63	An urokinase receptor antagonist that inhibits cell migration by blocking the formyl peptide receptor. FEBS Letters, 2008, 582, 1141-1146.	2.8	36
64	Diiron-containing metalloproteins: Developing functional models. Comptes Rendus Chimie, 2007, 10, 703-720.	0.5	42
65	From intergovernmental to global: UNESCO's response to globalization. Review of International Organizations, 2007, 2, 77-95.	3.4	15
66	Critical role of the N-loop and \hat{l}^21 -strand hydrophobic clusters of RANTES-derived peptides in anti-HIV activity. Biochemical and Biophysical Research Communications, 2006, 351, 664-668.	2.1	15
67	Artificial diiron proteins: From structure to function. Biopolymers, 2005, 80, 264-278.	2.4	93
68	Artificial di-iron proteins: solution characterization of four helix bundles containing two distinct types of inter-helical loops. Journal of Biological Inorganic Chemistry, 2005, 10, 539-549.	2.6	29
69	Title is missing!. Retrovirology, 2005, 2, P113.	2.0	1
70	Miniaturized heme proteins: crystal structure of Co(III)-mimochrome IV. Journal of Biological Inorganic Chemistry, 2004, 9, 1017-1027.	2.6	37
71	Design of a New Mimochrome with Unique Topology. Chemistry - A European Journal, 2003, 9, 5643-5654.	3.3	42
72	Sliding Helix and Change of Coordination Geometry in a Model Di-MnII Protein. Angewandte Chemie - International Edition, 2003, 42, 417-420.	13.8	52

#	Article	IF	CITATIONS
73	Conformational and coordination properties of a peptide containing the novel î±,î±-bis(2-pyridyl)glycine amino acidElectronic supplementary information (ESI) available: Figs. 1S, 2S. See http://www.rsc.org/suppdata/dt/b2/b209199b/. Dalton Transactions, 2003, , 787-792.	3.3	11
74	Preorganization of molecular binding sites in designed diiron proteins. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 3772-3777.	7.1	73
75	Developing synthetic hemoprotein mimetics: Design, synthesis and characterization of heme-peptide conjugates., 2002,, 91-93.		0
76	A novel class of Calmodulin mimetics: De Novo designed proteins in molecular recognition. , 2002, , 94-96.		0
77	Peptide-Based Hemeâ^'Protein Models. Chemical Reviews, 2001, 101, 3165-3190.	47.7	183
78	Toward the de Novo Design of a Catalytically Active Helix Bundle:Â A Substrate-Accessible Carboxylate-Bridged Dinuclear Metal Center. Journal of the American Chemical Society, 2001, 123, 12749-12757.	13.7	100
79	Structural determinants of CCR5 recognition and HIV-1 blockade in RANTES. Nature Structural Biology, 2001, 8, 611-615.	9.7	49
80	The crystal structure of Afc-containing peptides. Biopolymers, 2000, 53, 150-160.	2.4	14
81	Conformational behavior of C?,?-diphenyl glycine: Extended conformation in tripeptides containing consecutive D?g residues. Biopolymers, 2000, 53, 161-168.	2.4	11
82	The crystal structure of aDcp-containing peptide. Biopolymers, 2000, 53, 182-188.	2.4	12
83	Miniaturized metalloproteins: Application to iron-sulfur proteins. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 11922-11927.	7.1	66
84	Retrostructural analysis of metalloproteins: Application to the design of a minimal model for diiron proteins. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 6298-6305.	7.1	222
85	Conformational behavior of $\widehat{Cl}_{\pm},\widehat{l}_{\pm}$ -diphenyl glycine: Extended conformation in tripeptides containing consecutive \widehat{Dl} g residues. Biopolymers, 2000, 53, 161.	2.4	0
86	Crystallization and preliminary X-ray diffraction studies of the carboxylesterase EST2 from Alicyclobacillus acidocaldarius. Acta Crystallographica Section D: Biological Crystallography, 1999, 55, 1348-1349.	2.5	14
87	From natural to synthetic multisite thrombin inhibitors. , 1999, 51, 19-39.		24
88	De Novo Design and Structural Characterization of Proteins and Metalloproteins. Annual Review of Biochemistry, 1999, 68, 779-819.	11.1	576
89	The crystal structure of αâ€thrombinâ€hirunorm IV complex reveals a novel specificity site recognition mode. Protein Science, 1999, 8, 91-95.	7.6	11
90	Miniaturized hemoproteins: design, synthesis and characterization of mimochrome II. Inorganica Chimica Acta, 1998, 275-276, 301-313.	2.4	22

#	Article	IF	Citations
91	Bicyclic peptides as type I/type II β-turn scaffolds. , 1998, 40, 505-518.		10
92	Miniaturized hemoproteins. Biopolymers, 1998, 47, 5-22.	2.4	32
93	Conformational behaviour of Cî±,î±-diphenylglycine: foldedvs. extended structures in DφG-containing tripeptides. Journal of Peptide Science, 1998, 4, 21-32.	1.4	19
94	Hemoprotein models based on a covalent helix-heme-helix sandwich. 3. Coordination properties, reactivity and catalytic application of Fe(III)- and Fe(II)-mimochrome I. Journal of Biological Inorganic Chemistry, 1998, 3, 671-681.	2.6	27
95	A novel super-potent neurokinin A receptor antagonist containing dehydroalanine. Bioorganic and Medicinal Chemistry Letters, 1998, 8, 1153-1156.	2.2	10
96	Neuronorm is a potent and water soluble neurokinin A receptor antagonist. Bioorganic and Medicinal Chemistry Letters, 1998, 8, 1735-1740.	2.2	1
97	Hirunorms are true hirudin mimetics. The crystal structure of human αâ€thrombinâ€hirunorm V complex. Protein Science, 1998, 7, 243-253.	7.6	17
98	A Novel Rigid \hat{I}^2 -Turn Molecular Scaffold. Journal of the American Chemical Society, 1998, 120, 5879-5886.	13.7	18
99	Miniaturized hemoproteins. Biopolymers, 1998, 47, 5-22.	2.4	2
100	Hemoprotein Models Based on a Covalent Helix–Heme–Helix Sandwich: 1. Design, Synthesis, and Characterization. Chemistry - A European Journal, 1997, 3, 340-349.	3.3	61
101	Hemoprotein Models Based on a Covalent Helix–Heme–Helix Sandwich: 2. Structural Characterization of Co ^{III} Mimochrome I δand δIsomers. Chemistry - A European Journal, 1997, 3, 350-362.	3.3	45
102	Rational Design of True Hirudin Mimetics: Synthesis and Characterization of Multisite-Directed α-Thrombin Inhibitors1. Journal of Medicinal Chemistry, 1996, 39, 2008-2017.	6.4	27
103	Crystal and Molecular Structure of the [6-Deoxy-6-[(2-(4-imidazolyl)ethyl)amino]-cyclomaltoheptaose]copper(II) Ternary Complex withl-Tryptophanate. Role of Weak Forces in the Chiral Recognition Process Assisted by a Metallocyclodextrin. Inorganic Chemistry, 1996, 35, 4497-4504.	4.0	34
104	A review of the design, synthesis and biological activity of the bicyclic hexapeptide tachykinin NK2 antagonist MEN 10627. Regulatory Peptides, 1996, 65, 55-59.	1.9	16
105	Solvent-mediated conformational transition in \hat{l}^2 -alanine containing cyclic peptides. VIII. , 1996, 38, 693-703.		20
106	Discovering protein secondary structures: Classification and description of isolated α-turns. Biopolymers, 1996, 38, 705-721.	2.4	120
107	A Modified Cyclodextrin with a Fully Encapsulated Dansyl Group: Selfâ€Inclusion in the Solid State and in Solution. Chemistry - A European Journal, 1996, 2, 373-381.	3.3	105
108	Unusual conformational preferences of \hat{l}^2 -alanine containing cyclic peptides. VII. Biopolymers, 1996, 38, 683-691.	2.4	15

#	Article	IF	Citations
109	In vitro Activities of A-Gliadin-Related Synthetic Peptides Damaging Effect on the Atrophic Coeliac Mucosa and Activation of Mucosal Immune Response in the Treated Coeliac Mucosa. Scandinavian Journal of Gastroenterology, 1996, 31, 247-253.	1.5	108
110	Discovering protein secondary structures: classification and description of isolated alpha-turns. Biopolymers, 1996, 38, 705-21.	2.4	28
111	Specific interaction between cyclophilin and cyclic peptides. Biopolymers, 1995, 36, 273-281.	2.4	17
112	Conformational rigidity versus flexibility in a novel peptidic neurokinin A receptor antagonist. Journal of Peptide Science, 1995, 1, 236-240.	1.4	21
113	Conformational behaviour of A cyclolinopeptide a analogue: Two-dimensional NMR study of cyclo(Pro1-Pro-Phe-Phe-Ac6c-lle-ala-Val8). Journal of Peptide Science, 1995, 1, 330-340.	1.4	12
114	Design and structure of a novel Neurokinin A receptor antagonist cyclo(-Met1-Asp2-Trp3-Phe4-Dap5-Leu6-)cyclo(2β-5β). Journal of the Chemical Society Perkin Transactions II, 1995, , 987-993.	0.9	25
115	Defect peptide chemistry: Perturbations in the structure of a homopentapeptide induced by a guest residue interrupting side-chain regularity. Biopolymers, 1994, 34, 1409-1418.	2.4	16
116	?-Alanine containing cyclic peptides with predetermined turned structure. V. Biopolymers, 1994, 34, 1505-1515.	2.4	19
117	?-Alanine containing cyclic peptides with turned structure: The?pseudo type II ?-turn.? VI. Biopolymers, 1994, 34, 1517-1526.	2.4	22
118	Mixed conformation in C?,?-disubstituted tripeptides: X-ray crystal structures of Z-Aib-Dph-Gly-Ome and Bz-Dph-Dph-Gly-Ome. Biopolymers, 1994, 34, 1595-1604.	2.4	18
119	Conformational studies on peptides as enzyme inhibitors: chymotrypsin inhibitors using Bowman–Birk type as models. Journal of the Chemical Society Perkin Transactions II, 1994, , 1047-1053.	0.9	10
120	Influence of Lipophilicity on the Biological Activity of Cyclic Pseudopeptide NK-2 Receptor Antagonists. Journal of Medicinal Chemistry, 1994, 37, 3630-3638.	6.4	14
121	Noncoded residues as building blocks in the design of specific secondary structures: Symmetrically disubstituted glycines and ?-alanine. Biopolymers, 1993, 33, 1037-1049.	2.4	62
122	Pt(II) complexes of amino acids and peptides III. X-ray diffraction study of [Cl(Ph3P)Pt(H-Aib-O)]. Inorganica Chimica Acta, 1993, 204, 87-92.	2.4	14
123	Molecular Dynamics Simulation in Vacuo and in Solution of [Aib ^{5,6} -D-Ala ⁸] Cyclolinopeptide A: a Conformational and Comparative Study. Journal of Biomolecular Structure and Dynamics, 1992, 9, 1045-1060.	3.5	13
124	Conformation for a beta-cyclodextrin monosubstituted with a cyclic dipeptide Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 7218-7221.	7.1	40
125	A helical Dpg homo-peptide. Journal of the Chemical Society Perkin Transactions II, 1992, , 523.	0.9	20
126	First observation of a helical peptide containing chiral α-monosubstituted residues without a preferred screw sense. Journal of the Chemical Society Perkin Transactions II, 1992, , 971-977.	0.9	6

#	Article	IF	Citations
127	\hat{l}^2 -Alanine and \hat{l}^2 -bends. X-Ray diffraction structures of three linear oligopeptides. Journal of the Chemical Society Perkin Transactions II, 1992, , 1233-1237.	0.9	33
128	Bioactive peptides: x-ray and NMR conformational study of [Aib5,6-D-Ala8]cyclolinopeptide A. Journal of the American Chemical Society, 1992, 114, 8277-8283.	13.7	36
129	Structural characterization of the .betabend ribbon spiral: crystallographic analysis of two long (L-Pro-Aib)n sequential peptides. Journal of the American Chemical Society, 1992, 114, 6273-6278.	13.7	106
130	Pt(II) complexes of amino acids and peptides II. Structural analysis of trans-[Cl2-Pt-(H-Aib-OH)2n] and trans-[Pt-(H-Aib-Oâ^²)2]. Inorganica Chimica Acta, 1992, 196, 241-246.	2.4	10
131	Preferred conformation of the terminally blocked (Aib)10 homo-oligopeptide: A long, regular 310-helix. Biopolymers, 1991, 31, 129-138.	2.4	114
132	Crystal-state conformation of homo-oligomers of \hat{l}_{\pm} -aminoisobutyric acid: Molecular and crystal structure of pBrBz-(Aib)6-OMe. Structural Chemistry, 1991, 2, 523-527.	2.0	20
133	The polypeptide 310-helix. , 1991, , 302-304.		1
134	Helical structures in peptides., 1991,, 454-455.		0
135	Structure of clathridine Zn-complex, a metabolite of the marine sponge Clathrina clathrus. Tetrahedron, 1990, 46, 4387-4392.	1.9	40
136	Stereochemical behavior of acyclic peptide-cation complexes. Biopolymers, 1990, 30, 197-204.	2.4	2
137	Bicyclic peptides: Solid state conformation of cyclo(Glu-Leu-Pro-Gly-Lys-Leu-Pro-Gly)cyclo(1?-5?)Gly. Biopolymers, 1990, 30, 509-516.	2.4	4
138	Critical Main-Chain Length for Conformational Conversion From 3 ₁₀ -Helix to α-Helix in Polypeptides. Journal of Biomolecular Structure and Dynamics, 1990, 7, 1321-1331.	3.5	83
139	Linear oligopeptides. Part 227. X-Ray crystal and molecular structures of two α-helix-forming (Aib-L-Ala)sequential oligopeptides, pBrBz-(Aib-L-Ala)5-OMe and pBrBz-(Aib-L-Ala)6-OMe. Journal of the Chemical Society Perkin Transactions II, 1990, , 1829-1837.	0.9	40
140	Crystal structure of two retro-inverso sweeteners. Journal of the American Chemical Society, 1990, 112, 8909-8912.	13.7	29
141	The longest, regular polypeptide 310 helix at atomic resolution. Journal of Molecular Biology, 1990, 214, 633-635.	4.2	85
142	Regularly alternating L, D-peptides. I. The double-stranded left-handed antiparallel ?-helix in the structure of Boc-(L-Val-D-Val) 4-OMe. Biopolymers, 1989, 28, 193-201.	2.4	30
143	Regularly alternating L, D-peptides. II. The double-stranded right-handed antiparallel ?-helix in the structure of t-Boc-(L-Phe-D-Phe) 4-OMe. Biopolymers, 1989, 28, 203-214.	2.4	43
144	Regularly alternating L, D-peptides. III. Hexacyclic peptides from valine or phenylalanine. Biopolymers, 1989, 28, 215-223.	2.4	49

#	Article	IF	CITATIONS
145	Bioactive peptides: solid-state and solution conformation of cyclolinopeptide A. Journal of the American Chemical Society, 1989, 111, 9089-9098.	13.7	78
146	Structural versatility of peptides containing $C\hat{l}\pm,\hat{l}\pm$ -dialkylated glycines: conformational energy computations, i.r. absorption and 1H n.m.r. analysis of 1-aminocyclopropane-1-carboxylic acid homopeptides. International Journal of Biological Macromolecules, 1989, 11, 345-352.	7.5	32
147	Structural versatility of peptides containing Cα,α-dialkylated glycines. An X-ray diffraction study of six 1-aminocyclopropane-1-carboxylic acid rich peptides. International Journal of Biological Macromolecules, 1989, 11, 353-360.	7. 5	53
148	Preparation of All the Four Diastereomers of b-Phenylcysteine Methyl Ester through Chromatographic Optical Resolution of the 2,2-Dimethylthiazolidine Derivatives. Heterocycles, 1989, 28, 589.	0.7	12
149	Pt(II) complexes of amino acids and peptides. I. Structural analysis of trans-[Cl2Pt(L-HAlaOH)2]. Inorganica Chimica Acta, 1988, 153, 171-174.	2.4	15
150	Structural versatility of peptides from C.alpha., alphadialkylated glycines. A conformational energy computation and x-ray diffraction study of homopeptides from 1-aminocyclohexane-1-carboxylic acid1. Macromolecules, 1988, 21, 2064-2070.	4.8	42
151	Structural versatility of peptides from C.alpha., alphadialkylated glycines. An infrared absorption and 1H nuclear magnetic resonance study of homopeptides from 1-aminocyclohexane-1-carboxylic acid1. Macromolecules, 1988, 21, 2071-2074.	4.8	27
152	Structural versatility of peptides from Cl_{\pm} , l_{\pm} -dialkylated glycines: a conformational energy calculation and X-ray diffraction study of homopeptides from 1-aminocyclopentane-1-carboxylic acid. International Journal of Biological Macromolecules, 1988, 10, 292-299.	7. 5	45
153	Structural versatility of peptides from $C\hat{l}\pm,\hat{l}\pm$ -dialkylated glycines: an infrared absorption and 1H n.m.r. study of homopeptides from 1-aminocyclopentane-1-carboxylic acid. International Journal of Biological Macromolecules, 1988, 10, 300-304.	7. 5	38
154	On \hat{l}^2 -hairpin classification. International Journal of Biological Macromolecules, 1988, 10, 238-240.	7. 5	7
155	Long, Chiral Polypeptide 310-Helices at Atomic Resolution. Journal of Biomolecular Structure and Dynamics, 1988, 5, 803-817.	3.5	41
156	Linear oligopeptides. Part 147. Chemical and crystallographic study of the reaction between benzyloxycarbonyl chloride and \hat{l} ±-aminoisobutyric acid. Journal of the Chemical Society Perkin Transactions II, 1986, , 1371-1376.	0.9	32
157	A long, regular polypeptide 310-helix. Macromolecules, 1986, 19, 472-479.	4.8	89
158	Long polypeptide 310-helices at atomic resolution. Proceedings of the National Academy of Sciences of the United States of America, 1986, 83, 1988-1992.	7.1	64
159	A novel peptide conformation: First unequivocal observation of the oxy-analog of a ?-bend. Biopolymers, 1986, 25, 2237-2253.	2.4	31
160	Cyclic peptide metal salt adducts. II. crystal structure of the silver nitrate cyclosarcosylsarcosine 2:1 adduct. Inorganica Chimica Acta, 1986, 116, 31-35.	2.4	14
161	Cyclic peptide-metal salt adducts. I. crystal structure of the hexaquocopper(II) perchlorate cyclosarcosylsarcosine 1:2 adducts. Inorganica Chimica Acta, 1986, 123, 155-159.	2.4	7
162	Stereostructure and formation mechanisn of a new substituted benzofuran from phomenone Tetrahedron, 1986, 42, 4493-4498.	1.9	6

#	Article	IF	CITATIONS
163	Preferred structures of constrained peptides from achiral $\hat{l}\pm,\hat{l}\pm$ -dialkyiated glycyl residues with acyclic side chains. Journal of Biosciences, 1985, 8, 253-262.	1.1	14
164	Conformational behavior of î±,î±-dialkylated peptides. Biopolymers, 1985, 24, 1759-1767.	2.4	78
165	Molecular Structure of Peptaibol Antibiotics: Solution Conformation and Crystal Structure of the Octapeptide Corresponding to the $2\hat{a}\in$ Sequence of Emerimicins III and IV. Journal of Biomolecular Structure and Dynamics, 1985, 3, 585-598.	3.5	26
166	Linear oligopeptides â€" effect of lengthening of the main chain by one tetrahedral carbon atom in the -Aib-l-Ala- sequence: a solid-state conformational analysis of segments of polypeptide antibiotics. International Journal of Biological Macromolecules, 1985, 7, 81-88.	7.5	26
167	Linear oligopeptides: peptaibol antibiotics — preferred conformation of the 2–9 segment of emerimicins III and IV and all related short sequences. International Journal of Biological Macromolecules, 1985, 7, 357-362.	7.5	5
168	Conformation of pleionomers of .alphaaminoisobutyric acid. Macromolecules, 1985, 18, 895-902.	4.8	197
169	Folded and extended structures of homooligopeptides from .alpha.,.alphadialkylated glycines. A conformational energy computation and x-ray diffraction study. Journal of the American Chemical Society, 1984, 106, 8146-8152.	13.7	95
170	Folded and extended structures of homooligopeptides from .alpha.,.alphadialkylated .alphaamino acids. An infrared absorption and proton nuclear magnetic resonance study. Journal of the American Chemical Society, 1984, 106, 8152-8156.	13.7	71
171	Modified calmodulin calcium binding domain III International Journal of Peptide and Protein Research, 1984, 23, 454-461.	0.1	9
172	Preferred conformations of peptides containing ?,?-disubstituted ?-amino acids. Biopolymers, 1983, 22, 205-215.	2.4	258
173	Solid-state geometry and conformation of linear, diastereoisomeric oligoprolines. Biopolymers, 1983, 22, 305-317.	2.4	77
174	Structure and conformation of regularly alternating L,D linear peptides. Biopolymers, 1983, 22, 323-325.	2.4	5
175	Peptaibol antibiotics: Conformational preferences of synthetic emerimicin fragments. Biopolymers, 1983, 22, 1335-1356.	2.4	28
176	First observation of a \hat{l}^2 -turn conformation fused with the oxy-analogue of an \hat{l}_\pm -turn: The molecular structure of a model peptide of the C-terminal part of gramicidin A. Biochemical and Biophysical Research Communications, 1983, 112, 1056-1060.	2,1	4
177	Protected 1–3 segment of the peptaibol antibiotics alamethicin and hypelcin International Journal of Peptide and Protein Research, 1983, 22, 385-397.	0.1	13
178	Peptaibol antibiotics: a study on the helical structure of the 2-9 sequence of emerimicins III and IV Proceedings of the National Academy of Sciences of the United States of America, 1982, 79, 7951-7954.	7.1	179
179	Linear oligopeptides. 81. Solid-state and solution conformation of homooligo(.alphaaminoisobutyric) Tj ETQq1 Society, 1982, 104, 2437-2444.	1 0.78431 13.7	14 rgBT /Over 191
180	Linear oligopeptides. Part 85. Preferred conformations of linear homooligoprolines. N-tert-butyloxycarbonyl-D-prolyl-D-prolyl-L-proline. Macromolecules, 1982, 15, 54-59.	4.8	11

#	Article	IF	CITATION
181	A hairpin-shaped peptide conformation stabilized by multiple intramolecular H-bonds for a linear alternating D,L hexapeptide. Biochemical and Biophysical Research Communications, 1982, 107, 910-913.	2.1	14
182	Conformation of linear homoâ€oligoprolines. International Journal of Peptide and Protein Research, 1982, 20, 312-319.	0.1	7
183	Conformational studies of peptides: Crystal and molecular structures of L-3,4-dehydroproline and itst-butoxycarbonyl and acetyl amide derivatives. Biopolymers, 1981, 20, 283-302.	2.4	12
184	Self-association of N-protected \hat{l}_{\pm} -amino acids. Optically active and racemicN-tert-butyloxycarbonyl-alanine. Biopolymers, 1981, 20, 1635-1649.	2.4	17
185	Linear oligopeptides: 65′. Conformational analysis of the N-protected aromatic α-amino acid by X-ray diffraction and infrared absorption. International Journal of Biological Macromolecules, 1980, 2, 217-224.	7.5	20
186	Conformational of Diastereoisomeric Peptides. N-(tert-Butyloxycarbonyl)-L-prolyl-D-proline and Its Methyl Ester in the Solid State and in Solution. Macromolecules, 1980, 13, 1454-1462.	4.8	10
187	Structure and conformation of peptides: N-benzyloxycarboyl-(?-ethyl)-L-glutamyl-(?-ethyl)-L-glutamic acid ethyl ester. Biopolymers, 1979, 18, 517-522.	2.4	16
188	Linear Oligopeptides. 59. Stereochemical Analysis of N-tert-Butyloxycarbonyl-L-prolylsarcosine and N-tert-Butyloxycarbonylsarcosylsarcosine in the Solid State and in Solution. Macromolecules, 1979, 12, 438-445.	4.8	9
189			