
## Yuri A W Shardt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6851055/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                        | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Quality-Driven Regularization for Deep Learning Networks and Its Application to Industrial Soft<br>Sensors. IEEE Transactions on Neural Networks and Learning Systems, 2024, PP, 1-11.         | 11.3 | 42        |
| 2  | A Just-In-Time-Learning-Aided Canonical Correlation Analysis Method for Multimode Process<br>Monitoring and Fault Detection. IEEE Transactions on Industrial Electronics, 2021, 68, 5259-5270. | 7.9  | 78        |
| 3  | Deep Learning With Spatiotemporal Attention-Based LSTM for Industrial Soft Sensor Model<br>Development. IEEE Transactions on Industrial Electronics, 2021, 68, 4404-4414.                      | 7.9  | 234       |
| 4  | Modulation-Function-Based Finite-Horizon Sensor Fault Detection for Salient-Pole PMSM using<br>Parity-Space Residuals. IFAC-PapersOnLine, 2021, 54, 61-66.                                     | 0.9  | 2         |
| 5  | Sparse modeling and monitoring for industrial processes using sparse, distributed principal component analysis. Journal of the Taiwan Institute of Chemical Engineers, 2021, 122, 14-22.       | 5.3  | 11        |
| 6  | Comparison of Semirigorous and Empirical Models Derived Using Data Quality Assessment Methods.<br>Minerals (Basel, Switzerland), 2021, 11, 954.                                                | 2.0  | 3         |
| 7  | Multi-Output Soft Sensor with a Multivariate Filter That Predicts Errors Applied to an Industrial Reactive Distillation Process. Mathematics, 2021, 9, 1947.                                   | 2.2  | 4         |
| 8  | Dynamic system modelling and process monitoring based on long-term dependency slow feature analysis. Journal of Process Control, 2021, 105, 27-47.                                             | 3.3  | 23        |
| 9  | A KPI-Based Soft Sensor Development Approach Incorporating Infrequent, Variable Time Delayed<br>Measurements. IEEE Transactions on Control Systems Technology, 2020, 28, 2523-2531.            | 5.2  | 23        |
| 10 | Soft sensor design for variable time delay and variable sampling time. Journal of Process Control, 2020, 92, 310-318.                                                                          | 3.3  | 12        |
| 11 | Soft sensor model for dynamic processes based on multichannel convolutional neural network.<br>Chemometrics and Intelligent Laboratory Systems, 2020, 203, 104050.                             | 3.5  | 59        |
| 12 | Deep learning for fault-relevant feature extraction and fault classification with stacked supervised auto-encoder. Journal of Process Control, 2020, 92, 79-89.                                | 3.3  | 84        |
| 13 | Modeling for the performance of navigation, control and data post-processing of underwater gliders. Applied Ocean Research, 2020, 101, 102191.                                                 | 4.1  | 13        |
| 14 | Sensor Fault Detection for Salient PMSM based on Parity-Space Residual Generation and Robust Exact<br>Differentiation. IFAC-PapersOnLine, 2020, 53, 86-91.                                     | 0.9  | 7         |
| 15 | Data Quality Assessment for System Identification in the Age of Big Data and Industry 4.0.<br>IFAC-PapersOnLine, 2020, 53, 104-113.                                                            | 0.9  | 8         |
| 16 | Soft Sensor Design for Restricted Variable Sampling Time. IFAC-PapersOnLine, 2020, 53, 80-85.                                                                                                  | 0.9  | 0         |
| 17 | Sensitivity Analysis of Bias in Satellite Sea Surface Temperature Measurements. IFAC-PapersOnLine, 2020, 53, 764-771.                                                                          | 0.9  | 1         |
| 18 | Fault Classification in Dynamic Processes Using Multiclass Relevance Vector Machine and Slow<br>Feature Analysis. IEEE Access, 2020, 8, 9115-9123.                                             | 4.2  | 7         |

Yuri A W Shardt

| #  | Article                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Signal Generation for Switched Reluctance Motors using Parallel Genetic Algorithms.<br>IFAC-PapersOnLine, 2020, 53, 8193-8198.                                                                     | 0.9 | 0         |
| 20 | Optimization of Motion Control for a Variably Excited Linear Hybrid Stepper Motor. , 2019, , .                                                                                                     |     | 0         |
| 21 | Using normal probability plots to determine parameters for higherâ€level factorial experiments with orthogonal and orthonormal bases. Canadian Journal of Chemical Engineering, 2019, 97, 152-164. | 1.7 | 2         |
| 22 | Cost-sensitive large margin distribution machine for fault detection of wind turbines. Cluster Computing, 2019, 22, 7525-7537.                                                                     | 5.0 | 15        |
| 23 | An incipient fault detection approach via detrending and denoising. Control Engineering Practice, 2018, 74, 1-12.                                                                                  | 5.5 | 35        |
| 24 | Simultaneous Robust, Decoupled Output Feedback Control for Multivariate Industrial Systems. IEEE<br>Access, 2018, 6, 6777-6782.                                                                    | 4.2 | 4         |
| 25 | Modelling the strip thickness in hot steel rolling mills using leastâ€ <b>s</b> quares support vector machines.<br>Canadian Journal of Chemical Engineering, 2018, 96, 171-178.                    | 1.7 | 27        |
| 26 | Development and Industrial Application of a Soft Sensor using Markov Random Fields. , 2018, , .                                                                                                    |     | 1         |
| 27 | Path planning for an identification mission of an Autonomous Underwater Vehicle in a lemniscate form. IFAC-PapersOnLine, 2018, 51, 323-328.                                                        | 0.9 | 6         |
| 28 | A New Method for Fault Tolerant Control through Q-Learning. IFAC-PapersOnLine, 2018, 51, 38-45.                                                                                                    | 0.9 | 7         |
| 29 | Automated System Identification in Mineral Processing Industries: A Case Study using the Zinc Flotation Cell. IFAC-PapersOnLine, 2018, 51, 132-137.                                                | 0.9 | 8         |
| 30 | Robust decoupling mixed sensitivity controller design of looper control system for hot strip mill process. Advances in Mechanical Engineering, 2018, 10, 168781401881028.                          | 1.6 | 2         |
| 31 | An ADRC-Based Control Strategy for FRT Improvement of Wind Power Generation with a Doubly-Fed<br>Induction Generator. Energies, 2018, 11, 1150.                                                    | 3.1 | 14        |
| 32 | A KPI-Based Probabilistic Soft Sensor Development Approach that Maximizes the Coefficient of Determination. Sensors, 2018, 18, 3058.                                                               | 3.8 | 11        |
| 33 | A Comparison of Different Statistics for Detecting Multiplicative Faults in Multivariate<br>Statistics-Based Fault Detection Approaches. IEEE Access, 2018, 6, 43808-43823.                        | 4.2 | 5         |
| 34 | A KPI-based process monitoring and fault detection framework for large-scale processes. ISA<br>Transactions, 2017, 68, 276-286.                                                                    | 5.7 | 41        |
| 35 | Comparison of Two Basic Statistics for Fault Detection and Process Monitoring. IFAC-PapersOnLine, 2017, 50, 14776-14781.                                                                           | 0.9 | 14        |
| 36 | Parameter-based conditions for closed-loop system identifiability of ARX models with routine operating data. Journal of the Franklin Institute, 2017, 354, 722-751.                                | 3.4 | 4         |

Yuri A W Shardt

| #  | Article                                                                                                                                                                                               | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Assessment of T2- and Q-statistics for detecting additive and multiplicative faults in multivariate statistical process monitoring. Journal of the Franklin Institute, 2017, 354, 668-688.            | 3.4 | 20        |
| 38 | Using the expected detection delay to assess the performance of different multivariate statistical process monitoring methods for multiplicative and drift faults. ISA Transactions, 2017, 67, 56-66. | 5.7 | 15        |
| 39 | Soft sensor modeling based on PCA and LS-SVM for strip thickness in cold steel rolling mills. , 2017, , .                                                                                             |     | 6         |
| 40 | Data-Driven Design of Feedback-Feedforward Control Systems for Dynamic Processes.<br>IFAC-PapersOnLine, 2017, 50, 13916-13921.                                                                        | 0.9 | 1         |
| 41 | Parameter Identification and Control Scheme for Monitoring Automatic Thickness Control System with Measurement Delay. Journal of Control Science and Engineering, 2017, 2017, 1-11.                   | 1.0 | 2         |
| 42 | Self-Adaptive Artificial Bee Colony for Function Optimization. Journal of Control Science and Engineering, 2017, 2017, 1-13.                                                                          | 1.0 | 2         |
| 43 | A brief survey of different statistics for detecting multiplicative faults in multivariate statistical process monitoring. , 2016, , .                                                                |     | 4         |
| 44 | Development of Soft Sensors for the Case Where the Time Delay is Random. IFAC-PapersOnLine, 2016, 49, 1193-1198.                                                                                      | 0.9 | 2         |
| 45 | Estimating the unknown time delay in chemical processes. Engineering Applications of Artificial<br>Intelligence, 2016, 55, 219-230.                                                                   | 8.1 | 24        |
| 46 | Improved canonical correlation analysis-based fault detection methods for industrial processes.<br>Journal of Process Control, 2016, 41, 26-34.                                                       | 3.3 | 106       |
| 47 | Quantisation and data quality: Implications for system identification. Journal of Process Control, 2016, 40, 13-23.                                                                                   | 3.3 | 4         |
| 48 | An Adaptive, Advanced Control Strategy for KPI-Based Optimization of Industrial Processes. IEEE<br>Transactions on Industrial Electronics, 2016, 63, 3252-3260.                                       | 7.9 | 22        |
| 49 | Data Quantisation and Closed-Loop System Identification. IFAC-PapersOnLine, 2015, 48, 128-133.                                                                                                        | 0.9 | 1         |
| 50 | Unit-level modelling for KPI of batch hot strip mill process using dynamic partial least squares.<br>IFAC-PapersOnLine, 2015, 48, 1005-1010.                                                          | 0.9 | 4         |
| 51 | Economic Performance Indicator Based Optimization for the Air Separation Unit Compressor Trains.<br>IFAC-PapersOnLine, 2015, 48, 858-863.                                                             | 0.9 | 3         |
| 52 | Minimal required excitation for closed-loop identification: Some implications for data-driven, system identification. Journal of Process Control, 2015, 27, 22-35.                                    | 3.3 | 20        |
| 53 | A New Soft-Sensor-Based Process Monitoring Scheme Incorporating Infrequent KPI Measurements.<br>IEEE Transactions on Industrial Electronics, 2015, 62, 3843-3851.                                     | 7.9 | 69        |
|    |                                                                                                                                                                                                       |     |           |

54 Statistics for Chemical and Process Engineers. , 2015, , .

YURI A W SHARDT

| #  | Article                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Modelling Dynamic Processes Using System Identification Methods. , 2015, , 283-336.                                                                                                                                                 |     | 0         |
| 56 | Segmentation Methods for Model Identification from Historical Process Data. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2014, 47, 2836-2841.                                                       | 0.4 | 7         |
| 57 | Data quality assessment of routine operating data for process identification. Computers and Chemical Engineering, 2013, 55, 19-27.                                                                                                  | 3.8 | 33        |
| 58 | Statistical properties of signal entropy for use in detecting changes in time series data. Journal of Chemometrics, 2013, 27, 394-405.                                                                                              | 1.3 | 10        |
| 59 | Tuning a Soft Sensor's Bias Update Term. 1. The Open-Loop Case. Industrial & Engineering Chemistry<br>Research, 2012, 51, 4958-4967.                                                                                                | 3.7 | 12        |
| 60 | Tuning a Soft Sensor's Bias Update Term. 2. The Closed-Loop Case. Industrial & Engineering<br>Chemistry Research, 2012, 51, 4968-4981.                                                                                              | 3.7 | 8         |
| 61 | Determining the state of a process control system: Current trends and future challenges. Canadian<br>Journal of Chemical Engineering, 2012, 90, 217-245.                                                                            | 1.7 | 66        |
| 62 | Closed-Loop Identification using Routine Operating Data: the Effect of Time Delay. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2011, 44, 1646-1651.                                                | 0.4 | 1         |
| 63 | Closed-loop identification condition for ARMAX models using routine operating data. Automatica, 2011, 47, 1534-1537.                                                                                                                | 5.0 | 27        |
| 64 | Closed-loop identification with routine operating data: Effect of time delay and sampling time. Journal of Process Control, 2011, 21, 997-1010.                                                                                     | 3.3 | 29        |
| 65 | Conditions for Identifiability Using Routine Operating Data for a First-Order ARX Process Regulated by<br>a Lead-Lag Controller. IFAC Postprint Volumes IPPV / International Federation of Automatic Control,<br>2010, 43, 373-378. | 0.4 | 2         |