Changiz Geula

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6850848/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cortical and subcortical pathological burden and neuronal loss in an autopsy series of FTLD-TDP-type C. Brain, 2022, 145, 1069-1078.	7.6	12
2	Neuropathological fingerprints of survival, atrophy and language in primary progressive aphasia. Brain, 2022, 145, 2133-2148.	7.6	26
3	Propagation of TDP-43 proteinopathy in neurodegenerative disorders. Neural Regeneration Research, 2022, 17, 1498.	3.0	4
4	Accumulation of neurofibrillary tangles and activated microglia is associated with lower neuron densities in the aphasic variant of Alzheimer's disease. Brain Pathology, 2021, 31, 189-204.	4.1	36
5	Memory Resilience in Alzheimer Disease With Primary Progressive Aphasia. Neurology, 2021, 96, e916-e925.	1.1	14
6	Nosology of Primary Progressive Aphasia and the Neuropathology of Language. Advances in Experimental Medicine and Biology, 2021, 1281, 33-49.	1.6	22
7	Paucity of Entorhinal Cortex Pathology of the Alzheimer's Type in SuperAgers with Superior Memory Performance. Cerebral Cortex, 2021, 31, 3177-3183.	2.9	14
8	Increased <i>APOE</i> Îμ4 expression is associated with the difference in Alzheimer's disease risk from diverse ancestral backgrounds. Alzheimer's and Dementia, 2021, 17, 1179-1188.	0.8	33
9	Basal forebrain cholinergic system in the dementias: Vulnerability, resilience, and resistance. Journal of Neurochemistry, 2021, 158, 1394-1411.	3.9	42
10	Proteopathic tau primes and activates interleukin-1β via myeloid-cell-specific MyD88- and NLRP3-ASC-inflammasome pathway. Cell Reports, 2021, 36, 109720.	6.4	42
11	Neuropathologic basis of in vivo cortical atrophy in the aphasic variant of Alzheimer's disease. Brain Pathology, 2020, 30, 332-344.	4.1	11
12	Calbindin-D28K, parvalbumin, and calretinin in young and aged human locus coeruleus. Neurobiology of Aging, 2020, 94, 243-249.	3.1	5
13	Primary Progressive AphasiaÂhas a Unique Signature DistinctÂfrom Dementia of the Alzheimer's Type and Behavioral Variant Frontotemporal Dementia Regardless of Pathology. Journal of Neuropathology and Experimental Neurology, 2020, 79, 1379-1381.	1.7	5
14	Distribution of TDP-43 Pathology in Hippocampal Synaptic Relays Suggests Transsynaptic Propagation in Frontotemporal Lobar Degeneration. Journal of Neuropathology and Experimental Neurology, 2020, 79, 585-591.	1.7	9
15	Activated Microglia in Cortical White Matter Across Cognitive Aging Trajectories. Frontiers in Aging Neuroscience, 2019, 11, 94.	3.4	35
16	Revisiting the utility of TDP-43 immunoreactive (TDP-43-ir) pathology to classify FTLD-TDP subtypes. Acta Neuropathologica, 2019, 138, 167-169.	7.7	10
17	Cortical cholinergic denervation in primary progressive aphasia with Alzheimer pathology. Neurology, 2019, 92, e1580-e1588.	1.1	28
18	Genome-wide analyses as part of the international FTLD-TDP whole-genome sequencing consortium reveals novel disease risk factors and increases support for immune dysfunction in FTLD. Acta Neuropathologica, 2019, 137, 879-899.	7.7	90

#	Article	IF	CITATIONS
19	Morphology and Distribution of TDP-43 Pre-inclusions in Primary Progressive Aphasia. Journal of Neuropathology and Experimental Neurology, 2019, 78, 229-237.	1.7	10
20	Word comprehension in temporal cortex and Wernicke area. Neurology, 2019, 92, e224-e233.	1.1	33
21	Cognitive trajectories and spectrum of neuropathology in <scp>S</scp> uper <scp>A</scp> gers: The first 10 cases. Hippocampus, 2019, 29, 458-467.	1.9	44
22	Prominent microglial activation in cortical white matter is selectively associated with cortical atrophy in primary progressive aphasia. Neuropathology and Applied Neurobiology, 2019, 45, 216-229.	3.2	15
23	Atrophy and microglial distribution in primary progressive aphasia with transactive response DNAâ€binding proteinâ€43 kDa. Annals of Neurology, 2018, 83, 1096-1104.	5.3	15
24	Asymmetric TDP pathology in primary progressive aphasia with right hemisphere language dominance. Neurology, 2018, 90, e396-e403.	1.1	18
25	The cholinergic system in the basal forebrain of the Atlantic whiteâ€sided dolphin (<i>Lagenorhynchus) Tj ETQq1</i>	1 0.7843 1.6	14 rgBT /Ove
26	Potential genetic modifiers of disease risk and age at onset in patients with frontotemporal lobar degeneration and GRN mutations: a genome-wide association study. Lancet Neurology, The, 2018, 17, 548-558.	10.2	97
27	Variations in Acetylcholinesterase Activity within Human Cortical Pyramidal Neurons Across Age and Cognitive Trajectories. Cerebral Cortex, 2018, 28, 1329-1337.	2.9	32
28	Glioblastoma stem cell-derived exosomes induce M2 macrophages and PD-L1 expression on human monocytes. Oncolmmunology, 2018, 7, e1412909.	4.6	247
29	Von Economo neurons of the anterior cingulate across the lifespan and in Alzheimer's disease. Cortex, 2018, 99, 69-77.	2.4	47
30	Differential Neurotoxicity Related to Tetracycline Transactivator and TDP-43 Expression in Conditional TDP-43 Mouse Model of Frontotemporal Lobar Degeneration. Journal of Neuroscience, 2018, 38, 6045-6062.	3.6	8
31	Apical dendrite degeneration, a novel cellular pathology for Betz cells in ALS. Scientific Reports, 2017, 7, 41765.	3.3	74
32	Postmortem Adult Human Microglia Proliferate in Culture to High Passage and Maintain Their Response to Amyloid-β. Journal of Alzheimer's Disease, 2016, 54, 1157-1167.	2.6	12
33	Asymmetric pathology in primary progressive aphasia with progranulin mutations and TDP inclusions. Neurology, 2016, 86, 627-636.	1.1	35
34	Neuronal amyloid-β accumulation within cholinergic basal forebrain in ageing and Alzheimer's disease. Brain, 2015, 138, 1722-1737.	7.6	155
35	Morphometric and Histologic Substrates of Cingulate Integrity in Elders with Exceptional Memory Capacity. Journal of Neuroscience, 2015, 35, 1781-1791.	3.6	109
36	Accumulation and age-related elevation of amyloid-î ² within basal forebrain cholinergic neurons in the rhesus monkey. Neuroscience, 2015, 298, 102-111.	2.3	12

#	Article	IF	CITATIONS
37	Loss of calbindin-D 28K is associated with the full range of tangle pathology within basal forebrain cholinergic neurons in Alzheimer's disease. Neurobiology of Aging, 2015, 36, 3163-3170.	3.1	30
38	A Lifespan Observation of a Novel Mouse Model: In Vivo Evidence Supports AÎ ² Oligomer Hypothesis. PLoS ONE, 2014, 9, e85885.	2.5	35
39	Asymmetry and heterogeneity of Alzheimer's and frontotemporal pathology in primary progressive aphasia. Brain, 2014, 137, 1176-1192.	7.6	283
40	Primary progressive aphasia and the evolving neurology of the language network. Nature Reviews Neurology, 2014, 10, 554-569.	10.1	269
41	Alterations of Ca2+-responsive proteins within cholinergic neurons in aging and Alzheimer's disease. Neurobiology of Aging, 2014, 35, 1325-1333.	3.1	35
42	Youthful Memory Capacity in Old Brains: Anatomic and Genetic Clues from the Northwestern SuperAging Project. Journal of Cognitive Neuroscience, 2013, 25, 29-36.	2.3	126
43	In vivo AAV-mediated expression of calbindin-D28K in rat basal forebrain cholinergic neurons. Journal of Neuroscience Methods, 2013, 212, 106-113.	2.5	2
44	Biochemical Differentiation of Cholinesterases from Normal and Alzheimers Disease Cortex. Current Alzheimer Research, 2012, 9, 138-143.	1.4	50
45	Clinically concordant variations of Alzheimer pathology in aphasic versus amnestic dementia. Brain, 2012, 135, 1554-1565.	7.6	123
46	Microglia activation mediates fibrillar amyloid-β toxicity in the aged primate cortex. Neurobiology of Aging, 2011, 32, 387-397.	3.1	37
47	Age-related loss of calcium buffering and selective neuronal vulnerability in Alzheimer's disease. Acta Neuropathologica, 2011, 122, 565-576.	7.7	90
48	Asymmetric TDP-43 distribution in primary progressive aphasia with progranulin mutation. Neurology, 2010, 74, 1607-1610.	1.1	27
49	Neuronal and Axonal Loss Are Selectively Linked to Fibrillar Amyloid-β within Plaques of the Aged Primate Cerebral Cortex. American Journal of Pathology, 2010, 177, 325-333.	3.8	35
50	Cholinergic Neuronal and Axonal Abnormalities Are Present Early in Aging and in Alzheimer Disease. Journal of Neuropathology and Experimental Neurology, 2008, 67, 309-318.	1.7	172
51	Butyrylcholinesterase activity in the rat forebrain and upper brainstem: Postnatal development and adult distribution. Experimental Neurology, 2007, 204, 640-657.	4.1	18
52	Ccr2 deficiency impairs microglial accumulation and accelerates progression of Alzheimer-like disease. Nature Medicine, 2007, 13, 432-438.	30.7	784
53	DJ-1 Transcriptionally Up-regulates the Human Tyrosine Hydroxylase by Inhibiting the Sumoylation of Pyrimidine Tract-binding Protein-associated Splicing Factor. Journal of Biological Chemistry, 2006, 281, 20940-20948.	3.4	162
54	Apoptotic signals within the basal forebrain cholinergic neurons in Alzheimer's disease. Experimental Neurology, 2005, 195, 484-496.	4.1	76

#	Article	IF	CITATIONS
55	Butyrylcholinesterase, cholinergic neurotransmission and the pathology of Alzheimer's disease. Drugs of Today, 2004, 40, 711.	2.4	67
56	Distribution, progression and chemical composition of cortical amyloid-Î ² deposits in aged rhesus monkeys: similarities to the human. Acta Neuropathologica, 2003, 105, 145-156.	7.7	69
57	Loss of calbindinâ€D _{28k} from aging human cholinergic basal forebrain: Relation to neuronal loss. Journal of Comparative Neurology, 2003, 455, 249-259.	1.6	85
58	Neurobiology of butyrylcholinesterase. Nature Reviews Neuroscience, 2003, 4, 131-138.	10.2	719
59	Age-related changes in calbindin-D28k, calretinin, and parvalbumin-immunoreactive neurons in the human cerebral cortex. Experimental Neurology, 2003, 182, 220-231.	4.1	108
60	Comparative distribution of tau phosphorylated at Ser262 in pre-tangles and tangles. Neurobiology of Aging, 2003, 24, 767-776.	3.1	59
61	Selective age-related loss of CALBINDIN-D28k from basal forebrain cholinergic neurons in the common marmoset (callithrix jacchus). Neuroscience, 2003, 120, 249-259.	2.3	33
62	Loss of Calbindin-D _{28K} from Aging Human Cholinergic Basal Forebrain: Relation to Plaques and Tangles. Journal of Neuropathology and Experimental Neurology, 2003, 62, 605-616.	1.7	31
63	A CD36-initiated Signaling Cascade Mediates Inflammatory Effects of β-Amyloid. Journal of Biological Chemistry, 2002, 277, 47373-47379.	3.4	302
64	Amyloid-β deposits in the cerebral cortex of the aged common marmoset (Callithrix jacchus): incidence and chemical composition. Acta Neuropathologica, 2002, 103, 48-58.	7.7	111
65	Cyto- and Chemoarchitecture of Basal Forebrain Cholinergic Neurons in the Common Marmoset (Callithrix Jacchus). Experimental Neurology, 2000, 165, 306-326.	4.1	17
66	Aging renders the brain vulnerable to amyloid β-protein neurotoxicity. Nature Medicine, 1998, 4, 827-831.	30.7	524
67	Abnormalities of neural circuitry in Alzheimer's disease. Neurology, 1998, 51, S18-29; discussion S65-7.	1.1	160
68	Relationship Between Plaques, Tangles, and Loss of Cortical Cholinergic Fibers in Alzheimer Disease. Journal of Neuropathology and Experimental Neurology, 1998, 57, 63-75.	1.7	81
69	Age-related loss of calbindin from human basal forebrain cholinergic neurons. NeuroReport, 1997, 8, 2209-2213.	1.2	37
70	Systematic Regional Variations in the Loss of Cortical Cholinergic Fibers in Alzheimer's Disease. Cerebral Cortex, 1996, 6, 165-177.	2.9	191
71	Cholinesterases and the Pathology of Alzheimer Disease. Alzheimer Disease and Associated Disorders, 1995, 9, 23-28.	1.3	172
72	Postnatal Development of Cortical Acetylcholinesterase-Rich Neurons in the Rat Brain: Permanent and Transient Patterns. Experimental Neurology, 1995, 134, 157-178.	4.1	33

#	Article	IF	CITATIONS
73	Chemoarchitectonics of axonal and perikaryal acetylcholinesterase along information processing systems of the human cerebral cortex. Brain Research Bulletin, 1994, 33, 137-153.	3.0	42
74	Neuroglial cholinesterases in the normal brain and in Alzheimer's disease: Relationship to plaques, tangles, and patterns of selective vulnerability. Annals of Neurology, 1993, 34, 373-384.	5.3	209
75	Cholinergic innervation of the amygdaloid complex in the human brain and its alterations in old age and Alzheimer's disease. Journal of Comparative Neurology, 1993, 336, 117-134.	1.6	63
76	Differential localization of nadph-diaphorase and calbindin-D28k within the cholinergic neurons of the basal forebrain, striatum and brainstem in the rat, monkey, baboon and human. Neuroscience, 1993, 54, 461-476.	2.3	167
77	Developmentally transient expression of acetylcholinesterase within cortical pyramidal neurons of the rat brain. Developmental Brain Research, 1993, 76, 23-31.	1.7	27
78	Protease Inhibitors and Indolamines Selectively Inhibit Cholinesterases in the Histopathologic Structures of Alzheimer's Diseasea. Annals of the New York Academy of Sciences, 1993, 695, 65-68.	3.8	19
79	The acute neurotoxicity and effects upon cholinergic axons of intracerebrally injected β-amyloid in the rat brain. Neurobiology of Aging, 1992, 13, 553-559.	3.1	127
80	Acetylcholinesterase-rich pyramidal neurons in alzheimer's disease. Neurobiology of Aging, 1992, 13, 455-460.	3.1	31
81	Overlap between acetylcholinesterase-rich and choline acetyltransferase-positive (cholinergic) axons in human cerebral cortex. Brain Research, 1992, 577, 112-120.	2.2	94
82	Differential cholinergic innervation within functional subdivisions of the human cerebral cortex: A choline acetyltransferase study. Journal of Comparative Neurology, 1992, 318, 316-328.	1.6	256
83	Cholinergic innervation of the human striatum, globus pallidus, subthalamic nucleus, substantia nigra, and red nucleus. Journal of Comparative Neurology, 1992, 323, 252-268.	1.6	154
84	Cholinergic innervation of the human thalamus: Dual origin and differential nuclear distribution. Journal of Comparative Neurology, 1992, 325, 68-82.	1.6	149
85	Cholinesterases in the amyloid angiopathy of Alzheimer's disease. Annals of Neurology, 1992, 31, 565-569.	5.3	32
86	Acetylcholinesterase-rich neurons of the human cerebral cortex: Cytoarchitectonic and ontogenetic patterns of distribution. Journal of Comparative Neurology, 1991, 306, 193-220.	1.6	103
87	Human reticular formation: Cholinergic neurons of the pedunculopontine and laterodorsal tegmental nuclei and some cytochemical comparisons to forebrain cholinergic neurons. Journal of Comparative Neurology, 1989, 283, 611-633.	1.6	287
88	Protease nexin l immunostaining in alzheimer's disease. Annals of Neurology, 1989, 26, 628-634.	5.3	51
89	Cortical cholinergic fibers in aging and Alzheimer's disease: A morphometric study. Neuroscience, 1989, 33, 469-481.	2.3	192
90	Acetylcholinesterase-rich pyramidal neurons in the human neocortex and hippocampus: Absence at birth, development during the life span, and dissolution in Alzheimer's disease. Annals of Neurology, 1988, 24, 765-773.	5.3	90

#	Article	IF	CITATIONS
91	Nucleus basalis (Ch4) and cortical cholinergic innervation in the human brain: Observations based on the distribution of acetylcholinesterase and choline acetyltransferase. Journal of Comparative Neurology, 1988, 275, 216-240.	1.6	478
92	Anatomy of cholinesterase inhibition in Alzheimer's disease: Effect of physostigmine and tetrahydroaminoacridine on plaques and tangles. Annals of Neurology, 1987, 22, 683-691.	5.3	165