Changiz Geula

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6850848/publications.pdf

Version: 2024-02-01

92 papers 9,298 citations

57758 44 h-index 93 g-index

96 all docs

96
docs citations

96 times ranked 10538 citing authors

#	Article	IF	CITATIONS
1	Ccr2 deficiency impairs microglial accumulation and accelerates progression of Alzheimer-like disease. Nature Medicine, 2007, 13, 432-438.	30.7	784
2	Neurobiology of butyrylcholinesterase. Nature Reviews Neuroscience, 2003, 4, 131-138.	10.2	719
3	Aging renders the brain vulnerable to amyloid \hat{l}^2 -protein neurotoxicity. Nature Medicine, 1998, 4, 827-831.	30.7	524
4	Nucleus basalis (Ch4) and cortical cholinergic innervation in the human brain: Observations based on the distribution of acetylcholinesterase and choline acetyltransferase. Journal of Comparative Neurology, 1988, 275, 216-240.	1.6	478
5	A CD36-initiated Signaling Cascade Mediates Inflammatory Effects of \hat{l}^2 -Amyloid. Journal of Biological Chemistry, 2002, 277, 47373-47379.	3.4	302
6	Human reticular formation: Cholinergic neurons of the pedunculopontine and laterodorsal tegmental nuclei and some cytochemical comparisons to forebrain cholinergic neurons. Journal of Comparative Neurology, 1989, 283, 611-633.	1.6	287
7	Asymmetry and heterogeneity of Alzheimer's and frontotemporal pathology in primary progressive aphasia. Brain, 2014, 137, 1176-1192.	7.6	283
8	Primary progressive aphasia and the evolving neurology of the language network. Nature Reviews Neurology, 2014, 10, 554-569.	10.1	269
9	Differential cholinergic innervation within functional subdivisions of the human cerebral cortex: A choline acetyltransferase study. Journal of Comparative Neurology, 1992, 318, 316-328.	1.6	256
10	Glioblastoma stem cell-derived exosomes induce M2 macrophages and PD-L1 expression on human monocytes. Oncolmmunology, 2018, 7, e1412909.	4.6	247
11	Neuroglial cholinesterases in the normal brain and in Alzheimer's disease: Relationship to plaques, tangles, and patterns of selective vulnerability. Annals of Neurology, 1993, 34, 373-384.	5.3	209
12	Cortical cholinergic fibers in aging and Alzheimer's disease: A morphometric study. Neuroscience, 1989, 33, 469-481.	2.3	192
13	Systematic Regional Variations in the Loss of Cortical Cholinergic Fibers in Alzheimer's Disease. Cerebral Cortex, 1996, 6, 165-177.	2.9	191
14	Cholinesterases and the Pathology of Alzheimer Disease. Alzheimer Disease and Associated Disorders, 1995, 9, 23-28.	1.3	172
15	Cholinergic Neuronal and Axonal Abnormalities Are Present Early in Aging and in Alzheimer Disease. Journal of Neuropathology and Experimental Neurology, 2008, 67, 309-318.	1.7	172
16	Differential localization of nadph-diaphorase and calbindin-D28k within the cholinergic neurons of the basal forebrain, striatum and brainstem in the rat, monkey, baboon and human. Neuroscience, 1993, 54, 461-476.	2.3	167
17	Anatomy of cholinesterase inhibition in Alzheimer's disease: Effect of physostigmine and tetrahydroaminoacridine on plaques and tangles. Annals of Neurology, 1987, 22, 683-691.	5.3	165
18	DJ-1 Transcriptionally Up-regulates the Human Tyrosine Hydroxylase by Inhibiting the Sumoylation of Pyrimidine Tract-binding Protein-associated Splicing Factor. Journal of Biological Chemistry, 2006, 281, 20940-20948.	3.4	162

#	Article	IF	Citations
19	Abnormalities of neural circuitry in Alzheimer's disease. Neurology, 1998, 51, S18-29; discussion S65-7.	1.1	160
20	Neuronal amyloid-β accumulation within cholinergic basal forebrain in ageing and Alzheimer's disease. Brain, 2015, 138, 1722-1737.	7.6	155
21	Cholinergic innervation of the human striatum, globus pallidus, subthalamic nucleus, substantia nigra, and red nucleus. Journal of Comparative Neurology, 1992, 323, 252-268.	1.6	154
22	Cholinergic innervation of the human thalamus: Dual origin and differential nuclear distribution. Journal of Comparative Neurology, 1992, 325, 68-82.	1.6	149
23	The acute neurotoxicity and effects upon cholinergic axons of intracerebrally injected \hat{l}^2 -amyloid in the rat brain. Neurobiology of Aging, 1992, 13, 553-559.	3.1	127
24	Youthful Memory Capacity in Old Brains: Anatomic and Genetic Clues from the Northwestern SuperAging Project. Journal of Cognitive Neuroscience, 2013, 25, 29-36.	2.3	126
25	Clinically concordant variations of Alzheimer pathology in aphasic versus amnestic dementia. Brain, 2012, 135, 1554-1565.	7.6	123
26	Amyloid- \hat{l}^2 deposits in the cerebral cortex of the aged common marmoset (Callithrix jacchus): incidence and chemical composition. Acta Neuropathologica, 2002, 103, 48-58.	7.7	111
27	Morphometric and Histologic Substrates of Cingulate Integrity in Elders with Exceptional Memory Capacity. Journal of Neuroscience, 2015, 35, 1781-1791.	3.6	109
28	Age-related changes in calbindin-D28k, calretinin, and parvalbumin-immunoreactive neurons in the human cerebral cortex. Experimental Neurology, 2003, 182, 220-231.	4.1	108
29	Acetylcholinesterase-rich neurons of the human cerebral cortex: Cytoarchitectonic and ontogenetic patterns of distribution. Journal of Comparative Neurology, 1991, 306, 193-220.	1.6	103
30	Potential genetic modifiers of disease risk and age at onset in patients with frontotemporal lobar degeneration and GRN mutations: a genome-wide association study. Lancet Neurology, The, 2018, 17, 548-558.	10.2	97
31	Overlap between acetylcholinesterase-rich and choline acetyltransferase-positive (cholinergic) axons in human cerebral cortex. Brain Research, 1992, 577, 112-120.	2.2	94
32	Acetylcholinesterase-rich pyramidal neurons in the human neocortex and hippocampus: Absence at birth, development during the life span, and dissolution in Alzheimer's disease. Annals of Neurology, 1988, 24, 765-773.	5.3	90
33	Age-related loss of calcium buffering and selective neuronal vulnerability in Alzheimer's disease. Acta Neuropathologica, 2011, 122, 565-576.	7.7	90
34	Genome-wide analyses as part of the international FTLD-TDP whole-genome sequencing consortium reveals novel disease risk factors and increases support for immune dysfunction in FTLD. Acta Neuropathologica, 2019, 137, 879-899.	7.7	90
35	Loss of calbindinâ€D _{28k} from aging human cholinergic basal forebrain: Relation to neuronal loss. Journal of Comparative Neurology, 2003, 455, 249-259.	1.6	85
36	Relationship Between Plaques, Tangles, and Loss of Cortical Cholinergic Fibers in Alzheimer Disease. Journal of Neuropathology and Experimental Neurology, 1998, 57, 63-75.	1.7	81

#	Article	IF	CITATIONS
37	Apoptotic signals within the basal forebrain cholinergic neurons in Alzheimer's disease. Experimental Neurology, 2005, 195, 484-496.	4.1	76
38	Apical dendrite degeneration, a novel cellular pathology for Betz cells in ALS. Scientific Reports, 2017, 7, 41765.	3.3	74
39	Distribution, progression and chemical composition of cortical amyloid- \hat{l}^2 deposits in aged rhesus monkeys: similarities to the human. Acta Neuropathologica, 2003, 105, 145-156.	7.7	69
40	Butyrylcholinesterase, cholinergic neurotransmission and the pathology of Alzheimer's disease. Drugs of Today, 2004, 40, 711.	2.4	67
41	Cholinergic innervation of the amygdaloid complex in the human brain and its alterations in old age and Alzheimer's disease. Journal of Comparative Neurology, 1993, 336, 117-134.	1.6	63
42	Comparative distribution of tau phosphorylated at Ser262 in pre-tangles and tangles. Neurobiology of Aging, 2003, 24, 767-776.	3.1	59
43	Protease nexin I immunostaining in alzheimer's disease. Annals of Neurology, 1989, 26, 628-634.	5.3	51
44	Biochemical Differentiation of Cholinesterases from Normal and Alzheimers Disease Cortex. Current Alzheimer Research, 2012, 9, 138-143.	1.4	50
45	Von Economo neurons of the anterior cingulate across the lifespan and in Alzheimer's disease. Cortex, 2018, 99, 69-77.	2.4	47
46	Cognitive trajectories and spectrum of neuropathology in <scp>S</scp> uper <scp>A</scp> gers: The first 10 cases. Hippocampus, 2019, 29, 458-467.	1.9	44
47	Chemoarchitectonics of axonal and perikaryal acetylcholinesterase along information processing systems of the human cerebral cortex. Brain Research Bulletin, 1994, 33, 137-153.	3.0	42
48	Basal forebrain cholinergic system in the dementias: Vulnerability, resilience, and resistance. Journal of Neurochemistry, 2021, 158, 1394-1411.	3.9	42
49	Proteopathic tau primes and activates interleukin- $1\hat{l}^2$ via myeloid-cell-specific MyD88- and NLRP3-ASC-inflammasome pathway. Cell Reports, 2021, 36, 109720.	6.4	42
50	Age-related loss of calbindin from human basal forebrain cholinergic neurons. NeuroReport, 1997, 8, 2209-2213.	1.2	37
51	Microglia activation mediates fibrillar amyloid- \hat{l}^2 toxicity in the aged primate cortex. Neurobiology of Aging, 2011, 32, 387-397.	3.1	37
52	Accumulation of neurofibrillary tangles and activated microglia is associated with lower neuron densities in the aphasic variant of Alzheimer's disease. Brain Pathology, 2021, 31, 189-204.	4.1	36
53	Neuronal and Axonal Loss Are Selectively Linked to Fibrillar Amyloid- \hat{l}^2 within Plaques of the Aged Primate Cerebral Cortex. American Journal of Pathology, 2010, 177, 325-333.	3.8	35
54	A Lifespan Observation of a Novel Mouse Model: In Vivo Evidence Supports $\hat{Al^2}$ Oligomer Hypothesis. PLoS ONE, 2014, 9, e85885.	2.5	35

#	Article	IF	CITATIONS
55	Alterations of Ca2+-responsive proteins within cholinergic neurons in aging and Alzheimer's disease. Neurobiology of Aging, 2014, 35, 1325-1333.	3.1	35
56	Asymmetric pathology in primary progressive aphasia with progranulin mutations and TDP inclusions. Neurology, 2016, 86, 627-636.	1.1	35
57	Activated Microglia in Cortical White Matter Across Cognitive Aging Trajectories. Frontiers in Aging Neuroscience, 2019, 11, 94.	3.4	35
58	Postnatal Development of Cortical Acetylcholinesterase-Rich Neurons in the Rat Brain: Permanent and Transient Patterns. Experimental Neurology, 1995, 134, 157-178.	4.1	33
59	Selective age-related loss of CALBINDIN-D28k from basal forebrain cholinergic neurons in the common marmoset (callithrix jacchus). Neuroscience, 2003, 120, 249-259.	2. 3	33
60	Word comprehension in temporal cortex and Wernicke area. Neurology, 2019, 92, e224-e233.	1.1	33
61	Increased <i>APOE</i> Îμ4 expression is associated with the difference in Alzheimer's disease risk from diverse ancestral backgrounds. Alzheimer's and Dementia, 2021, 17, 1179-1188.	0.8	33
62	Cholinesterases in the amyloid angiopathy of Alzheimer's disease. Annals of Neurology, 1992, 31, 565-569.	5.3	32
63	Variations in Acetylcholinesterase Activity within Human Cortical Pyramidal Neurons Across Age and Cognitive Trajectories. Cerebral Cortex, 2018, 28, 1329-1337.	2.9	32
64	Acetylcholinesterase-rich pyramidal neurons in alzheimer's disease. Neurobiology of Aging, 1992, 13, 455-460.	3.1	31
65	Loss of Calbindin-D _{28K} from Aging Human Cholinergic Basal Forebrain: Relation to Plaques and Tangles. Journal of Neuropathology and Experimental Neurology, 2003, 62, 605-616.	1.7	31
66	Loss of calbindin-D 28K is associated with the full range of tangle pathology within basal forebrain cholinergic neurons in Alzheimer's disease. Neurobiology of Aging, 2015, 36, 3163-3170.	3.1	30
67	Cortical cholinergic denervation in primary progressive aphasia with Alzheimer pathology. Neurology, 2019, 92, e1580-e1588.	1.1	28
68	Developmentally transient expression of acetylcholinesterase within cortical pyramidal neurons of the rat brain. Developmental Brain Research, 1993, 76, 23-31.	1.7	27
69	Asymmetric TDP-43 distribution in primary progressive aphasia with progranulin mutation. Neurology, 2010, 74, 1607-1610.	1.1	27
70	Neuropathological fingerprints of survival, atrophy and language in primary progressive aphasia. Brain, 2022, 145, 2133-2148.	7.6	26
71	Nosology of Primary Progressive Aphasia and the Neuropathology of Language. Advances in Experimental Medicine and Biology, 2021, 1281, 33-49.	1.6	22
72	Protease Inhibitors and Indolamines Selectively Inhibit Cholinesterases in the Histopathologic Structures of Alzheimer's Diseasea. Annals of the New York Academy of Sciences, 1993, 695, 65-68.	3.8	19

#	Article	IF	Citations
73	Butyrylcholinesterase activity in the rat forebrain and upper brainstem: Postnatal development and adult distribution. Experimental Neurology, 2007, 204, 640-657.	4.1	18
74	Asymmetric TDP pathology in primary progressive aphasia with right hemisphere language dominance. Neurology, 2018, 90, e396-e403.	1.1	18
75	Cyto- and Chemoarchitecture of Basal Forebrain Cholinergic Neurons in the Common Marmoset (Callithrix Jacchus). Experimental Neurology, 2000, 165, 306-326.	4.1	17
76	Atrophy and microglial distribution in primary progressive aphasia with transactive response DNAâ€binding proteinâ€43 kDa. Annals of Neurology, 2018, 83, 1096-1104.	5.3	15
77	Prominent microglial activation in cortical white matter is selectively associated with cortical atrophy in primary progressive aphasia. Neuropathology and Applied Neurobiology, 2019, 45, 216-229.	3.2	15
78	Memory Resilience in Alzheimer Disease With Primary Progressive Aphasia. Neurology, 2021, 96, e916-e925.	1.1	14
79	Paucity of Entorhinal Cortex Pathology of the Alzheimer's Type in SuperAgers with Superior Memory Performance. Cerebral Cortex, 2021, 31, 3177-3183.	2.9	14
80	Accumulation and age-related elevation of amyloid- \hat{l}^2 within basal forebrain cholinergic neurons in the rhesus monkey. Neuroscience, 2015, 298, 102-111.	2.3	12
81	Postmortem Adult Human Microglia Proliferate in Culture to High Passage and Maintain Their Response to Amyloid-β. Journal of Alzheimer's Disease, 2016, 54, 1157-1167.	2.6	12
82	Cortical and subcortical pathological burden and neuronal loss in an autopsy series of FTLD-TDP-type C. Brain, 2022, 145, 1069-1078.	7.6	12
83	Neuropathologic basis of in vivo cortical atrophy in the aphasic variant of Alzheimer's disease. Brain Pathology, 2020, 30, 332-344.	4.1	11
84	Revisiting the utility of TDP-43 immunoreactive (TDP-43-ir) pathology to classify FTLD-TDP subtypes. Acta Neuropathologica, 2019, 138, 167-169.	7.7	10
85	Morphology and Distribution of TDP-43 Pre-inclusions in Primary Progressive Aphasia. Journal of Neuropathology and Experimental Neurology, 2019, 78, 229-237.	1.7	10
86	Distribution of TDP-43 Pathology in Hippocampal Synaptic Relays Suggests Transsynaptic Propagation in Frontotemporal Lobar Degeneration. Journal of Neuropathology and Experimental Neurology, 2020, 79, 585-591.	1.7	9
87	Differential Neurotoxicity Related to Tetracycline Transactivator and TDP-43 Expression in Conditional TDP-43 Mouse Model of Frontotemporal Lobar Degeneration. Journal of Neuroscience, 2018, 38, 6045-6062.	3.6	8
88	Calbindin-D28K, parvalbumin, and calretinin in young and aged human locus coeruleus. Neurobiology of Aging, 2020, 94, 243-249.	3.1	5
89	Primary Progressive AphasiaÂhas a Unique Signature DistinctÂfrom Dementia of the Alzheimer's Type and Behavioral Variant Frontotemporal Dementia Regardless of Pathology. Journal of Neuropathology and Experimental Neurology, 2020, 79, 1379-1381.	1.7	5
90	Propagation of TDP-43 proteinopathy in neurodegenerative disorders. Neural Regeneration Research, 2022, 17, 1498.	3.0	4

#	Article	IF	CITATIONS
91	In vivo AAV-mediated expression of calbindin-D28K in rat basal forebrain cholinergic neurons. Journal of Neuroscience Methods, 2013, 212, 106-113.	2.5	2

The cholinergic system in the basal forebrain of the Atlantic white $\hat{a} \in s$ ided dolphin (<i>Lagenorhynchus) Tj ETQq0 0 0 rgBT /Oyerlock 10