
Katharine Dibb

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6849878/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Differences in intracellular calcium homeostasis between atrial and ventricular myocytes. Journal of Molecular and Cellular Cardiology, 2009, 46, 463-473.	1.9	149
2	Characterization of an Extensive Transverse Tubular Network in Sheep Atrial Myocytes and its Depletion in Heart Failure. Circulation: Heart Failure, 2009, 2, 482-489.	3.9	144
3	Transverse tubules are a common feature in large mammalian atrial myocytes including human. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 301, H1996-H2005.	3.2	142
4	Tachycardia-induced silencing of subcellular Ca2+ signaling in atrial myocytes. Journal of Clinical Investigation, 2014, 124, 4759-4772.	8.2	114
5	Calcium in the Pathophysiology of Atrial Fibrillation and Heart Failure. Frontiers in Physiology, 2018, 9, 1380.	2.8	112
6	Dependence of Cardiac Transverse Tubules on the BAR Domain Protein Amphiphysin II (BIN-1). Circulation Research, 2014, 115, 986-996.	4.5	109
7	How cardiomyocyte excitation, calcium release and contraction become altered with age. Journal of Molecular and Cellular Cardiology, 2015, 83, 62-72.	1.9	103
8	Age-related divergent remodeling of the cardiac extracellular matrix in heart failure: Collagen accumulation in the young and loss in the aged. Journal of Molecular and Cellular Cardiology, 2012, 53, 82-90.	1.9	88
9	Analysis of cellular calcium fluxes in cardiac muscle to understand calcium homeostasis in the heart. Cell Calcium, 2007, 42, 503-512.	2.4	80
10	Reproducibility of CRISPR-Cas9 methods for generation of conditional mouse alleles: a multi-center evaluation. Genome Biology, 2019, 20, 171.	8.8	69
11	Regulation of systolic [Ca ²⁺] _i and cellular Ca ²⁺ flux balance in rat ventricular myocytes by SR Ca ²⁺ , Lâ€ŧype Ca ²⁺ current and diastolic [Ca ²⁺] _i . Journal of Physiology, 2007, 585, 579-592.	2.9	68
12	Mechanisms underlying enhanced cardiac excitation contraction coupling observed in the senescent sheep myocardium. Journal of Molecular and Cellular Cardiology, 2004, 37, 1171-81.	1.9	67
13	Molecular Basis of Ion Selectivity, Block, and Rectification of the Inward Rectifier Kir3.1/Kir3.4 K+ Channel. Journal of Biological Chemistry, 2003, 278, 49537-49548.	3.4	62
14	Calcium signalling microdomains and the t-tubular system in atrial mycoytes: potential roles in cardiac disease and arrhythmias. Cardiovascular Research, 2013, 98, 192-203.	3.8	56
15	Comparison of Atrial Fibrillation in the Young versus That in the Elderly: A Review. Cardiology Research and Practice, 2013, 2013, 1-16.	1.1	49
16	Impaired βâ€adrenergic responsiveness accentuates dysfunctional excitation–contraction coupling in an ovine model of tachypacingâ€induced heart failure. Journal of Physiology, 2011, 589, 1367-1382.	2.9	47
17	The mechanism and significance of the slow changes of ventricular action potential duration following a change of heart rate. Experimental Physiology, 2009, 94, 520-528.	2.0	45
18	Altered atrial cytosolic calcium handling contributes to the development of postoperative atrial fibrillation. Cardiovascular Research, 2021, 117, 1790-1801.	3.8	45

KATHARINE DIBB

#	Article	IF	CITATIONS
19	Perturbed atrial calcium handling in an ovine model of heart failure: Potential roles for reductions in the L-type calcium current. Journal of Molecular and Cellular Cardiology, 2015, 79, 169-179.	1.9	42
20	A functional role for transverse (t-) tubules in the atria. Journal of Molecular and Cellular Cardiology, 2013, 58, 84-91.	1.9	36
21	Effects of eicosapentaenoic acid on cardiac SR Ca2+-release and ryanodine receptor function. Cardiovascular Research, 2003, 60, 337-346.	3.8	35
22	Phosphodiesterase 5 inhibition improves contractile function and restores transverse tubule loss and catecholamine responsiveness in heart failure. Scientific Reports, 2019, 9, 6801.	3.3	34
23	Balanced changes in Ca buffering by SERCA and troponin contribute to Ca handling during β-adrenergic stimulation in cardiac myocytes. Cardiovascular Research, 2014, 104, 347-354.	3.8	33
24	Methods for isolating atrial cells from large mammals and humans. Journal of Molecular and Cellular Cardiology, 2015, 86, 187-198.	1.9	26
25	Residues and Mechanisms for Slow Activation and Ba2+Block of the Cardiac Muscarinic K+ Channel, Kir3.1/Kir3.4. Journal of Biological Chemistry, 2000, 275, 35831-35839.	3.4	25
26	The Selectivity Filter May Act as the Agonist-activated Gate in the G Protein-activated Kir3.1/Kir3.4 K+ Channel. Journal of Biological Chemistry, 2003, 278, 50654-50663.	3.4	21
27	K+ Activation of Kir3.1/Kir3.4 and Kv1.4K+ Channels Is Regulated by Extracellular Charges. Biophysical Journal, 2004, 87, 2407-2418.	0.5	20
28	Photoperiod-dependent modulation of cardiac excitation contraction coupling in the Siberian hamster. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2005, 288, R607-R614.	1.8	18
29	Cardiac Transverse Tubules in Physiology and Heart Failure. Annual Review of Physiology, 2022, 84, 229-255.	13.1	15
30	Increased Vulnerability to Atrial Fibrillation Is Associated With Increased Susceptibility to Alternans in Old Sheep. Journal of the American Heart Association, 2018, 7, e009972.	3.7	14
31	Increased Ca buffering underpins remodelling of Ca ²⁺ handling in old sheep atrial myocytes. Journal of Physiology, 2017, 595, 6263-6279.	2.9	13
32	Base of Pore Loop Is Important for Rectification, Activation, Permeation, and Block of Kir3.1/Kir3.4. Biophysical Journal, 2006, 90, 4018-4034.	0.5	8
33	PDE5 Inhibition Suppresses Ventricular Arrhythmias by Reducing SR Ca ²⁺ Content. Circulation Research, 2021, 129, 650-665.	4.5	8
34	Temporal Development of Autonomic Dysfunction in Heart Failure: Effects of Age in an Ovine Rapid-pacing Model. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2016, 71, 1544-1552.	3.6	7
35	Interaction of background Ca ²⁺ influx, sarcoplasmic reticulum threshold and heart failure in determining propensity for Ca ²⁺ waves in sheep heart. Journal of Physiology, 2022, 600, 2637-2650.	2.9	7
36	A small leak may sink a great ship but what does it do to the heart?. Journal of Physiology, 2010, 588, 4849-4849.	2.9	4

#	Article	IF	CITATIONS
37	A model model: a commentary on DiFrancesco and Noble (1985) â€~A model of cardiac electrical activity incorporating ionic pumps and concentration changes'. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140316.	4.0	4
38	Response to correspondence on "Reproducibility of CRISPR-Cas9 methods for generation of conditional mouse alleles: a multi-center evaluation― Genome Biology, 2021, 22, 99.	8.8	4
39	Cs+ block of the cardiac muscarinic K+ channel, GIRK1/GIRK4, is not dependent on the aspartate residue at position 173. Pflugers Archiv European Journal of Physiology, 2000, 440, 740-744.	2.8	3
40	Optimising Large Animal Models of Sustained Atrial Fibrillation: Relevance of the Critical Mass Hypothesis. Frontiers in Physiology, 2021, 12, 690897.	2.8	1
41	Calcium Signaling in Cardiac Muscle. , 2010, , 1027-1030.		0
42	Letter by Pearman etÂal.Âregarding article "Effect of botulinum toxin on inducibility and maintenance of atrial fibrillation in ovine myocardial tissue― PACE - Pacing and Clinical Electrophysiology, 2017, 40, 1186-1186.	1.2	0
43	Ageâ€dependent alterations to the cardiac extracellular matrix in heart failure: differences between ventricular and atrial remodeling. FASEB Journal, 2012, 26, .	0.5	0
44	Both collagen and elastin matrices are remodeled in the failing ovine atria – a role for elastinâ€degrading enzymes in atrial structural remodeling. FASEB Journal, 2013, 27, 1129.7.	0.5	0