Yuji Kajiwara

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6849133/publications.pdf

Version: 2024-02-01

		394421	610901
24	2,210	19	24
papers	citations	h-index	g-index
	2.2		4007
30	30	30	4337
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Haploinsufficiency of the autism-associated Shank3 gene leads to deficits in synaptic function, social interaction, and social communication. Molecular Autism, 2010, 1, 15.	4.9	521
2	Autism-like Deficits in Shank3-Deficient Mice Are Rescued by Targeting Actin Regulators. Cell Reports, 2015, 11, 1400-1413.	6.4	245
3	Integrative network analysis of nineteen brain regions identifies molecular signatures and networks underlying selective regional vulnerability to Alzheimer's disease. Genome Medicine, 2016, 8, 104.	8.2	224
4	cGAS drives noncanonical-inflammasome activation in age-related macular degeneration. Nature Medicine, 2018, 24, 50-61.	30.7	205
5	Identification of Small Exonic CNV from Whole-Exome Sequence Data and Application to Autism Spectrum Disorder. American Journal of Human Genetics, 2013, 93, 607-619.	6.2	136
6	Canonical Inflammasomes Drive IFN- $\hat{\mathbf{i}}$ 3 to Prime Caspase-11 in Defense against a Cytosol-Invasive Bacterium. Cell Host and Microbe, 2015, 18, 320-332.	11.0	101
7	A Critical Role for Human Caspase-4 in Endotoxin Sensitivity. Journal of Immunology, 2014, 193, 335-343.	0.8	95
8	Behavioral Phenotyping of an Improved Mouse Model of Phelan–McDermid Syndrome with a Complete Deletion of the∢i>Shank3⟨/i>Gene. ENeuro, 2018, 5, ENEURO.0046-18.2018.	1.9	79
9	Molecular dissection of NRG1-ERBB4 signaling implicates PTPRZ1 as a potential schizophrenia susceptibility gene. Molecular Psychiatry, 2008, 13, 162-172.	7.9	73
10	Phenotypic and functional analysis of SHANK3 stop mutations identified in individuals with ASD and/or ID. Molecular Autism, 2015, 6, 23.	4.9	68
11	GJA1 (connexin43) is a key regulator of Alzheimer's disease pathogenesis. Acta Neuropathologica Communications, 2018, 6, 144.	5.2	59
12	SLITRK1 Binds 14-3-3 and Regulates Neurite Outgrowth in a Phosphorylation-Dependent Manner. Biological Psychiatry, 2009, 66, 918-925.	1.3	58
13	Intestinal dysmotility in a zebrafish (Danio rerio) shank3a;shank3b mutant model of autism. Molecular Autism, 2019, 10, 3.	4.9	55
14	Extensive proteomic screening identifies the obesity-related NYGGF4 protein as a novel LRP1-interactor, showing reduced expression in early Alzheimer's disease. Molecular Neurodegeneration, 2010, 5, 1.	10.8	51
15	Characterization of SLITRK1 Variation in Obsessive-Compulsive Disorder. PLoS ONE, 2013, 8, e70376.	2.5	47
16	FE65 Binds Teashirt, Inhibiting Expression of the Primate-Specific Caspase-4. PLoS ONE, 2009, 4, e5071.	2.5	33
17	Compound heterozygous PNPLA6 mutations cause Boucher–Neuhäser syndrome with late-onset ataxia. Journal of Neurology, 2014, 261, 2411-2423.	3.6	30
18	Analysis of a purported SHANK3 mutation in a boy with autism: Clinical impact of rare variant research in neurodevelopmental disabilities. Brain Research, 2011, 1380, 98-105.	2.2	28

#	Article	lF	CITATION
19	Calsenilin interacts with transcriptional co-repressor C-terminal binding protein(s). Journal of Neurochemistry, 2006, 98, 1290-1301.	3.9	24
20	The human-specific <i>CASP4</i> gene product contributes to Alzheimer-related synaptic and behavioural deficits. Human Molecular Genetics, 2016, 25, 4315-4327.	2.9	21
21	Presenilin 1 is necessary for neuronal, but not glial, EGFR expression and neuroprotectionvial ³ -secretase-independent transcriptional mechanisms. FASEB Journal, 2015, 29, 3702-3712.	0.5	17
22	The bZIP-like motif of hnRNP C directs the nuclear accumulation of pre-mRNA and lethality in yeast. Journal of Molecular Biology, 2001, 305, 829-838.	4.2	11
23	Presenilin1/γâ€secretase protects neurons from glucose deprivationâ€induced death by regulating miRâ€212 and PEA15. FASEB Journal, 2018, 32, 243-253.	0.5	10
24	Phenotypic and genotypic characterization of families with complex intellectual disability identified pathogenic genetic variations in known and novel disease genes. Scientific Reports, 2020, 10, 968.	3.3	8