Ruth Gabizon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6848388/publications.pdf

Version: 2024-02-01

50 2,757 24 51 g-index

52 52 52 52 1926

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	Comparing anti–aging hallmark activities of Metformin and Nano-PSO in a mouse model of genetic Creutzfeldt-Jakob Disease. Neurobiology of Aging, 2022, 110, 77-87.	3.1	3
2	Nano-PSO Administration Attenuates Cognitive and Neuronal Deficits Resulting from Traumatic Brain Injury. Molecules, 2022, 27, 2725.	3.8	5
3	Delay of gCJD aggravation in sick TgMHu2ME199K mice by combining NPC transplantation and Nano-PSO administration. Neurobiology of Aging, 2020, 95, 231-239.	3.1	6
4	Brain targeting of 9c,11t-Conjugated Linoleic Acid, a natural calpain inhibitor, preserves memory and reduces $A\hat{l}^2$ and P25 accumulation in 5XFAD mice. Scientific Reports, 2019, 9, 18437.	3.3	22
5	Mitochondrial dysfunction in preclinical genetic prion disease: A target for preventive treatment?. Neurobiology of Disease, 2019, 124, 57-66.	4.4	21
6	Autologous neural progenitor cell transplantation into newborn mice modeling for E200K genetic prion disease delays disease progression. Neurobiology of Aging, 2018, 65, 192-200.	3.1	11
7	Identifying therapeutic targets and treatments in model systems. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2018, 153, 409-418.	1.8	3
8	Continues administration of Nano-PSO significantly increased survival of genetic CJD mice. Neurobiology of Disease, 2017, 108, 140-147.	4.4	15
9	Chronic Progressive Neurodegeneration in a Transgenic Mouse Model of Prion Disease. Frontiers in Neuroscience, 2016, 10, 510.	2.8	11
10	Aggregation of MBP in chronic demyelination. Annals of Clinical and Translational Neurology, 2015, 2, 711-721.	3.7	40
11	Treatment of a multiple sclerosis animal model by a novel nanodrop formulation of a natural antioxidant. International Journal of Nanomedicine, 2015, 10, 7165.	6.7	32
12	Genetic prion disease: no role for the immune system in disease pathogenesis?. Human Molecular Genetics, 2014, 23, 4134-4141.	2.9	2
13	Pomegranate seed oil nanoemulsions for the prevention and treatment of neurodegenerative diseases: the case of genetic CJD. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, 1353-1363.	3.3	75
14	Snord 3A: A Molecular Marker and Modulator of Prion Disease Progression. PLoS ONE, 2013, 8, e54433.	2.5	14
15	PrPST, a Soluble, Protease Resistant and Truncated PrP Form Features in the Pathogenesis of a Genetic Prion Disease. PLoS ONE, 2013, 8, e69583.	2.5	19
16	Targeting of prion-infected lymphoid cells to the central nervous system accelerates prion infection. Journal of Neuroinflammation, 2012, 9, 58.	7.2	3
17	Copper is toxic to PrP-ablated mice and exacerbates disease in a mouse model of E200K genetic prion disease. Neurobiology of Disease, 2012, 45, 1010-1017.	4.4	25
18	Age-related alterations affect the susceptibility of mice to prion infection. Neurobiology of Aging, 2011, 32, 2006-2015.	3.1	18

#	Article	lF	Citations
19	Tau and 14-3-3 of genetic and sporadic Creutzfeldt–Jakob disease patients in Israel. Journal of Neurology, 2011, 258, 255-262.	3.6	32
20	Fatal Prion Disease in a Mouse Model of Genetic E200K Creutzfeldt-Jakob Disease. PLoS Pathogens, 2011, 7, e1002350.	4.7	68
21	Oxidation of Helix-3 Methionines Precedes the Formation of PK Resistant PrPSc. PLoS Pathogens, 2010, 6, e1000977.	4.7	51
22	Chemically Induced Accumulation of GAGs Delays PrPSc Clearance but Prolongs Prion Disease Incubation Time. Cellular and Molecular Neurobiology, 2008, 28, 1005-1015.	3.3	13
23	Virusâ€induced alterations of membrane lipids affect the incorporation of PrP ^{Sc} into cells. Journal of Neuroscience Research, 2008, 86, 2753-2762.	2.9	8
24	Methionine Sulfoxides on PrP ^{Sc} : A Prion-Specific Covalent Signature. Biochemistry, 2008, 47, 8866-8873.	2.5	52
25	Induced Neuroprotection Independently From PrPSc Accumulation in a Mouse Model for Prion Disease Treated With Simvastatin. Archives of Neurology, 2008, 65, 762-75.	4.5	26
26	Fatal Neurological Disease in Scrapie-Infected Mice Induced for Experimental Autoimmune Encephalomyelitis. Journal of Virology, 2007, 81, 9942-9949.	3.4	15
27	Prion urine comprises a glycosaminoglycan-light chain IgG complex that can be stained by Congo red. Journal of Virological Methods, 2006, 133, 205-210.	2.1	9
28	Characterization of light chain immunoglobulin in urine from animals and humans infected with prion diseases. Journal of Neuroimmunology, 2005, 162, 12-18.	2.3	10
29	PrPSc Incorporation to Cells Requires Endogenous Glycosaminoglycan Expression. Journal of Biological Chemistry, 2005, 280, 17057-17061.	3.4	78
30	Inhibition of P53-related apoptosis had no effect on PrPSc accumulation and prion disease incubation time. Neurobiology of Disease, 2005, 18, 282-285.	4.4	13
31	The metabolism of glycosaminoglycans is impaired in prion diseases. Neurobiology of Disease, 2005, 20, 738-743.	4.4	21
32	Copper binding to PrPC may inhibit prion disease propagation. Brain Research, 2003, 993, 192-200.	2.2	98
33	Dimethyl sulfoxide delays PrPsc accumulation and disease symptoms in prion-infected hamsters. Brain Research, 2003, 983, 137-143.	2.2	27
34	Novel heparan mimetics potently inhibit the scrapie prion protein and its endocytosis. Biochemical and Biophysical Research Communications, 2003, 312, 473-479.	2.1	78
35	Doppel and PrPCdo not share the same membrane microenvironment. FEBS Letters, 2002, 530, 85-88.	2.8	21
36	Valproic acid treatment results in increased accumulation of prion proteins. Annals of Neurology, 2002, 52, 416-420.	5.3	15

#	Article	IF	CITATIONS
37	The Cellular Prion Protein Colocalizes with the Dystroglycan Complex in the Brain. Journal of Neurochemistry, 2002, 75, 1889-1897.	3.9	82
38	Reconstitution of Prion Infectivity from Solubilized Protease-resistant PrP and Nonprotein Components of Prion Rods. Journal of Biological Chemistry, 2001, 276, 14324-14328.	3.4	53
39	Copper Binding to the PrP Isoforms: a Putative Marker of Their Conformation and Function. Journal of Virology, 2001, 75, 7872-7874.	3.4	32
40	A C-terminal-truncated PrP Isoform Is Present in Mature Sperm. Journal of Biological Chemistry, 1999, 274, 32153-32158.	3.4	63
41	Protease-resistant and Detergent-insoluble Prion Protein Is Not Necessarily Associated with Prion Infectivity. Journal of Biological Chemistry, 1999, 274, 17981-17986.	3.4	62
42	Subcellular trafficking abnormalities of a prion protein with a disrupted disulfide loop. FEBS Letters, 1999, 460, 11-16.	2.8	18
43	The Anti-prion Activity of Congo Red. Journal of Biological Chemistry, 1998, 273, 3484-3489.	3.4	113
44	Familial Creutzfeldt-Jakob Disease: Codon 200 Prion Disease in Libyan Jews. Medicine (United States), 1997, 76, 227-237.	1.0	60
45	Of mice and (mad) cows â€" transgenic mice help to understand prions. Trends in Genetics, 1997, 13, 264-269.	6.7	11
46	Complete Penetrance of Creutzfeldt-Jakob Disease in Libyan Jews Carrying the E200K Mutation in the Prion Protein Gene. Molecular Medicine, 1995, 1, 607-613.	4.4	81
47	Prion propagation in mice expressing human and chimeric PrP transgenes implicates the interaction of cellular PrP with another protein. Cell, 1995, 83, 79-90.	28.9	800
48	Heparin-like molecules bind differentially to prion-proteins and change their intracellular metabolic fate. Journal of Cellular Physiology, 1993, 157, 319-325.	4.1	136
49	Mutation of the Prion Protein in Libyan Jews with Creutzfeldt–Jakob Disease. New England Journal of Medicine, 1991, 324, 1091-1097.	27.0	281
50	Properties of Scrapie Prion Proteins in Liposomes and Amyloid Rods. Novartis Foundation Symposium, 1988, 135, 182-196.	1.1	3