Elsa Rossignol

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6847774/publications.pdf

Version: 2024-02-01

41 papers

2,337 citations

331670 21 h-index 289244 40 g-index

42 all docs

42 docs citations

times ranked

42

5035 citing authors

#	Article	IF	CITATIONS
1	Infantile onset carnitine palmitoyltransferase 2 deficiency: Cortical polymicrogyria, schizencephaly, and gray matter heterotopias in an adolescent with normal development. JIMD Reports, 2022, 63, 3-10.	1.5	1
2	Endocrine and Growth Abnormalities in 4H Leukodystrophy Caused by Variants in <i>POLR3A</i> , <i>POLR3B</i> , and <i>POLR1C</i> . Journal of Clinical Endocrinology and Metabolism, 2021, 106, e660-e674.	3.6	26
3	<i>FBXO28</i> causes developmental and epileptic encephalopathy with profound intellectual disability. Epilepsia, 2021, 62, e13-e21.	5.1	8
4	Reversing frontal disinhibition rescues behavioural deficits in models of CACNA1A-associated neurodevelopment disorders. Molecular Psychiatry, 2021, 26, 7225-7246.	7.9	16
5	Stress in Parents of Children With Genetically Determined Leukoencephalopathies: A Pilot Study. Journal of Child Neurology, 2020, 35, 901-907.	1.4	7
6	Mutations in PIGB Cause an Inherited GPI Biosynthesis Defect with an Axonal Neuropathy and Metabolic Abnormality in Severe Cases. American Journal of Human Genetics, 2019, 105, 384-394.	6.2	37
7	Both gainâ€ofâ€function and lossâ€ofâ€function <i>de novo <scp>CACNA</scp>1A</i> mutations cause severe developmental epileptic encephalopathies in the spectrum of Lennoxâ€Gastaut syndrome. Epilepsia, 2019, 60, 1881-1894.	5.1	57
8	Mutations in ACTL6B Cause Neurodevelopmental Deficits and Epilepsy and Lead to Loss of Dendrites in Human Neurons. American Journal of Human Genetics, 2019, 104, 815-834.	6.2	59
9	IQSEC2-related encephalopathy in males and females: a comparative study including 37 novel patients. Genetics in Medicine, 2019, 21, 837-849.	2.4	47
10	The epilepsy-associated protein TBC1D24 is required for normal development, survival and vesicle trafficking in mammalian neurons. Human Molecular Genetics, 2019, 28, 584-597.	2.9	35
11	Recessive mutations in <i>VPS13D</i> cause childhood onset movement disorders. Annals of Neurology, 2018, 83, 1089-1095.	5.3	104
12	Health-Related Quality of Life for Patients With Genetically Determined Leukoencephalopathy. Pediatric Neurology, 2018, 84, 21-26.	2.1	9
13	FRMPD4 mutations cause X-linked intellectual disability and disrupt dendritic spine morphogenesis. Human Molecular Genetics, 2018, 27, 589-600.	2.9	20
14	PHACTRing in actin: actin deregulation in genetic epilepsies. Brain, 2018, 141, 3084-3088.	7.6	0
15	Ex Utero /em> Electroporation and Organotypic Slice Cultures of Embryonic Mouse Brains for Live-Imaging of Migrating GABAergic Interneurons. Journal of Visualized Experiments, 2018, , .	0.3	1
16	Remodeled cortical inhibition prevents motor seizures in generalized epilepsy. Annals of Neurology, 2018, 84, 436-451.	5.3	19
17	Optic nerve hypoplasia in a patient with a de novo KIF1A heterozygous mutation. Canadian Journal of Ophthalmology, 2017, 52, e169-e171.	0.7	14
18	High Rate of Recurrent De Novo Mutations in Developmental and Epileptic Encephalopathies. American Journal of Human Genetics, 2017, 101, 664-685.	6.2	337

#	Article	IF	CITATIONS
19	Involvement of cortical fast-spiking parvalbumin-positive basket cells in epilepsy. Progress in Brain Research, 2016, 226, 81-126.	1.4	74
20	LPIN1 deficiency with severe recurrent rhabdomyolysis and persistent elevation of creatine kinase levels due to chromosome 2 maternal isodisomy. Molecular Genetics and Metabolism Reports, 2015, 5, 85-88.	1.1	20
21	Efficacy and safety of lacosamide as an adjunctive therapy for refractory focal epilepsy in paediatric patients: a retrospective single-centre study. Epileptic Disorders, 2015, 17, 436-443.	1.3	20
22	De Novo Mutations in the Motor Domain of KIF1A Cause Cognitive Impairment, Spastic Paraparesis, Axonal Neuropathy, and Cerebellar Atrophy. Human Mutation, 2015, 36, 69-78.	2.5	114
23	CACNA1A haploinsufficiency causes cognitive impairment, autism and epileptic encephalopathy with mild cerebellar symptoms. European Journal of Human Genetics, 2015, 23, 1505-1512.	2.8	165
24	Normal Cerebrospinal Fluid Pyridoxal 5′-Phosphate Level in a PNPO-Deficient Patient with Neonatal-Onset Epileptic Encephalopathy. JIMD Reports, 2015, 22, 67-75.	1.5	21
25	A Gain-of-Function Mutation in <i> NALCN </i> in a Child with Intellectual Disability, Ataxia, and Arthrogryposis. Human Mutation, 2015, 36, 753-757.	2.5	46
26	Bilateral congenital corneal anesthesia in a patient with SCN9A mutation, confirmed primary erythromelalgia, and paroxysmal extreme pain disorder. Journal of AAPOS, 2015, 19, 478-479.	0.3	13
27	An atypical case of <i>SCN9A</i> mutation presenting with global motor delay and a severe pain disorder. Muscle and Nerve, 2014, 49, 134-138.	2.2	20
28	<scp>WONOEP</scp> appraisal: New genetic approaches to study epilepsy. Epilepsia, 2014, 55, 1170-1186.	5.1	13
28		5.1	13
	<scp>WONOEP</scp> appraisal: New genetic approaches to study epilepsy. Epilepsia, 2014, 55, 1170-1186.		
29	<scp>WONOEP</scp> appraisal: New genetic approaches to study epilepsy. Epilepsia, 2014, 55, 1170-1186. The genetic landscape of infantile spasms. Human Molecular Genetics, 2014, 23, 4846-4858. Vanishing White Matter Disease in French-Canadian Patients From Quebec. Pediatric Neurology, 2014,	2.9	156
30	<scp>WONOEP</scp> appraisal: New genetic approaches to study epilepsy. Epilepsia, 2014, 55, 1170-1186. The genetic landscape of infantile spasms. Human Molecular Genetics, 2014, 23, 4846-4858. Vanishing White Matter Disease in French-Canadian Patients From Quebec. Pediatric Neurology, 2014, 51, 225-232. Mutations in DOCK7 in Individuals with Epileptic Encephalopathy and Cortical Blindness. American	2.9	156
29 30 31	<scp>WONOEP</scp> appraisal: New genetic approaches to study epilepsy. Epilepsia, 2014, 55, 1170-1186. The genetic landscape of infantile spasms. Human Molecular Genetics, 2014, 23, 4846-4858. Vanishing White Matter Disease in French-Canadian Patients From Quebec. Pediatric Neurology, 2014, 51, 225-232. Mutations in DOCK7 in Individuals with Epileptic Encephalopathy and Cortical Blindness. American Journal of Human Genetics, 2014, 94, 891-897. Ca _V 2.1 ablation in cortical interneurons selectively impairs fastâ€spiking basket cells and	2.9 2.1 6.2	156 6 44
29 30 31 32		2.9 2.1 6.2 5.3	156 6 44 95
30 31 32 33	 <scp>WONOEP</scp> appraisal: New genetic approaches to study epilepsy. Epilepsia, 2014, 55, 1170-1186. The genetic landscape of infantile spasms. Human Molecular Genetics, 2014, 23, 4846-4858. Vanishing White Matter Disease in French-Canadian Patients From Quebec. Pediatric Neurology, 2014, 51, 225-232. Mutations in DOCK7 in Individuals with Epileptic Encephalopathy and Cortical Blindness. American Journal of Human Genetics, 2014, 94, 891-897. Ca_V 2.1 ablation in cortical interneurons selectively impairs fastâ€spiking basket cells and causes generalized seizures. Annals of Neurology, 2013, 74, 209-222. Chronic inflammatory demyelinating polyneuropathy. Handbook of Clinical Neurology / Edited By PJ Vinken and G W Bruyn, 2013, 112, 1163-1169. Satb1 Is an Activity-Modulated Transcription Factor Required for the Terminal Differentiation and Connectivity of Medial Ganglionic Eminence-Derived Cortical Interneurons. Journal of Neuroscience, 	2.9 2.1 6.2 5.3	156 6 44 95

3

#	Article	IF	CITATIONS
37	The Cell-Intrinsic Requirement of Sox6 for Cortical Interneuron Development. Neuron, 2009, 63, 466-481.	8.1	194
38	Clinical, electrophysiologic, and genetic study of non-dystrophic myotonia in French-Canadians. Neuromuscular Disorders, 2009, 19, 330-334.	0.6	44
39	Vagus nerve stimulation in pediatric epileptic syndromes. Seizure: the Journal of the British Epilepsy Association, 2009, 18, 34-37.	2.0	73
40	Evolution and Treatment of Childhood Chronic Inflammatory Polyneuropathy. Pediatric Neurology, 2007, 36, 88-94.	2.1	40
41	Pharmacogenetic testing in pediatric neurology: a pragmatic study evaluating clinician and patient perceptions. Personalized Medicine, 0, , .	1.5	0