Sebastian Böcker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6847710/publications.pdf

Version: 2024-02-01

132 papers 7,251 citations

71102 41 h-index 78 g-index

152 all docs

152 docs citations

times ranked

152

6445 citing authors

#	Article	IF	Citations
1	SIRIUS 4: a rapid tool for turning tandem mass spectra into metabolite structure information. Nature Methods, 2019, 16, 299-302.	19.0	822
2	Searching molecular structure databases with tandem mass spectra using CSI:FingerID. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 12580-12585.	7.1	695
3	Feature-based molecular networking in the GNPS analysis environment. Nature Methods, 2020, 17, 905-908.	19.0	650
4	Systematic classification of unknown metabolites using high-resolution fragmentation mass spectra. Nature Biotechnology, 2021, 39, 462-471.	17.5	317
5	SIRIUS: decomposing isotope patterns for metabolite identification. Bioinformatics, 2009, 25, 218-224.	4.1	276
6	Computational mass spectrometry for metabolomics: Identification of metabolites and small molecules. Analytical and Bioanalytical Chemistry, 2010, 398, 2779-2788.	3.7	159
7	Fragmentation trees reloaded. Journal of Cheminformatics, 2016, 8, 5.	6.1	138
8	Computing Fragmentation Trees from Tandem Mass Spectrometry Data. Analytical Chemistry, 2011, 83, 1243-1251.	6.5	134
9	Significance estimation for large scale metabolomics annotations by spectral matching. Nature Communications, 2017, 8, 1494.	12.8	128
10	Base-specific fragmentation of amplified 16S rRNA genes analyzed by mass spectrometry: A tool for rapid bacterial identification. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 7039-7044.	7.1	122
11	Computational mass spectrometry for small molecules. Journal of Cheminformatics, 2013, 5, 12.	6.1	122
12	Critical Assessment of Small Molecule Identification 2016: automated methods. Journal of Cheminformatics, 2017, 9, 22.	6.1	122
13	Ion identity molecular networking for mass spectrometry-based metabolomics in the GNPS environment. Nature Communications, 2021, 12, 3832.	12.8	119
14	High-Throughput MALDI-TOF Discovery of Genomic Sequence Polymorphisms. Genome Research, 2003, 14, 126-133.	5 . 5	114
15	Towards <i>de novo</i> identification of metabolites by analyzing tandem mass spectra. Bioinformatics, 2008, 24, i49-i55.	4.1	110
16	Identifying the Unknowns by Aligning Fragmentation Trees. Analytical Chemistry, 2012, 84, 3417-3426.	6.5	104
17	Database-independent molecular formula annotation using Gibbs sampling through ZODIAC. Nature Machine Intelligence, 2020, 2, 629-641.	16.0	103
18	High-confidence structural annotation of metabolites absent from spectral libraries. Nature Biotechnology, 2022, 40, 411-421.	17.5	100

#	Article	IF	CITATIONS
19	Unbiased Transcriptional Comparisons of Generalist and Specialist Herbivores Feeding on Progressively Defenseless Nicotiana attenuata Plants. PLoS ONE, 2010, 5, e8735.	2.5	95
20	Novel Mass Spectrometry-Based Tool for Genotypic Identification of Mycobacteria. Journal of Clinical Microbiology, 2004, 42, 339-346.	3.9	89
21	Metabolite identification through multiple kernel learning on fragmentation trees. Bioinformatics, 2014, 30, i157-i164.	4.1	87
22	Computational mass spectrometry for small-molecule fragmentation. TrAC - Trends in Analytical Chemistry, 2014, 53, 41-48.	11.4	86
23	Partitioning biological data with transitivity clustering. Nature Methods, 2010, 7, 419-420.	19.0	84
24	Gene Expansion Shapes Genome Architecture in the Human Pathogen Lichtheimia corymbifera: An Evolutionary Genomics Analysis in the Ancient Terrestrial Mucorales (Mucoromycotina). PLoS Genetics, 2014, 10, e1004496.	3.5	80
25	Multiplexed discovery of sequence polymorphisms using base-specific cleavage and MALDI-TOF MS. Nucleic Acids Research, 2005, 33, e38-e38.	14.5	78
26	Simple but Fundamental Limitations on Supertree and Consensus Tree Methods. Systematic Biology, 2000, 49, 363-368.	5.6	77
27	RNase T1 mediated base-specific cleavage and MALDI-TOF MS for high-throughput comparative sequence analysis. Nucleic Acids Research, 2003, 31, 47e-47.	14.5	76
28	Mining molecular structure databases: Identification of small molecules based on fragmentation mass spectrometry data. Mass Spectrometry Reviews, 2017, 36, 624-633.	5.4	75
29	Chemically informed analyses of metabolomics mass spectrometry data with Qemistree. Nature Chemical Biology, 2021, 17, 146-151.	8.0	73
30	Exact Algorithms for Cluster Editing: Evaluation and Experiments. Algorithmica, 2011, 60, 316-334.	1.3	71
31	Current status of retention time prediction in metabolite identification. Journal of Separation Science, 2020, 43, 1746-1754.	2.5	71
32	New kids on the block: novel informatics methods for natural product discovery. Natural Product Reports, 2014, 31, 807.	10.3	64
33	A Fast and Simple Algorithm for the Money Changing Problem. Algorithmica, 2007, 48, 413-432.	1.3	57
34	Fast metabolite identification with Input Output Kernel Regression. Bioinformatics, 2016, 32, i28-i36.	4.1	57
35	<i>De novo</i> peptide sequencing by tandem MS using complementary CID and electron transfer dissociation. Electrophoresis, 2009, 30, 3736-3747.	2.4	53
36	Searching molecular structure databases using tandem MS data: are we there yet?. Current Opinion in Chemical Biology, 2017, 36, 1-6.	6.1	53

#	Article	IF	CITATIONS
37	Liquid-chromatography retention order prediction for metabolite identification. Bioinformatics, 2018, 34, i875-i883.	4.1	52
38	Recovering Symbolically Dated, Rooted Trees from Symbolic Ultrametrics. Advances in Mathematics, 1998, 138, 105-125.	1.1	51
39	MSNovelist: de novo structure generation from mass spectra. Nature Methods, 2022, 19, 865-870.	19.0	49
40	Comprehensive cluster analysis with Transitivity Clustering. Nature Protocols, 2011, 6, 285-295.	12.0	47
41	Expanding the Use of Spectral Libraries in Proteomics. Journal of Proteome Research, 2018, 17, 4051-4060.	3.7	47
42	Current state-of-the-art of separation methods used in LC-MS based metabolomics and lipidomics. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2022, 1188, 123069.	2.3	44
43	EXACT AND HEURISTIC ALGORITHMS FOR WEIGHTED CLUSTER EDITING. , 2007, , .		43
44	SNP and mutation discovery using base-specific cleavage and MALDI-TOF mass spectrometry. Bioinformatics, 2003, 19, i44-i53.	4.1	42
45	EPoS: a modular software framework for phylogenetic analysis. Bioinformatics, 2008, 24, 2399-2400.	4.1	41
46	Exact ILP solutions for phylogenetic minimum flip problems. , 2010, , .		39
47	A golden ratio parameterized algorithm for Cluster Editing. Journal of Discrete Algorithms, 2012, 16, 79-89.	0.7	36
48	Bayesian networks for mass spectrometric metabolite identification via molecular fingerprints. Bioinformatics, 2018, 34, i333-i340.	4.1	36
49	Molecular Formula Identification with SIRIUS. Metabolites, 2013, 3, 506-516.	2.9	34
50	Algorithmic Aspects of Tree Amalgamation. Journal of Algorithms, 2000, 37, 522-537.	0.9	33
51	Computation of Median Gene Clusters. Journal of Computational Biology, 2009, 16, 1085-1099.	1.6	32
52	Even faster parameterized cluster deletion and cluster editing. Information Processing Letters, 2011, 111, 717-721.	0.6	31
53	Peak intensity prediction in MALDI-TOF mass spectrometry: A machine learning study to support quantitative proteomics. BMC Bioinformatics, 2008, 9, 443.	2.6	30
54	Mass spectrometry imaging of surface lipids on intact <i>Drosophila melanogaster</i> flies. Journal of Mass Spectrometry, 2014, 49, 223-232.	1.6	30

#	Article	IF	Citations
55	Mapping metabolites from rough terrain: laser ablation electrospray ionization on non-flat samples. RSC Advances, 2017, 7, 9045-9050.	3.6	28
56	De novo analysis of electron impact mass spectra using fragmentation trees. Analytica Chimica Acta, 2012, 739, 67-76.	5.4	26
57	Predicting the Presence of Uncommon Elements in Unknown Biomolecules from Isotope Patterns. Analytical Chemistry, 2016, 88, 7556-7566.	6.5	26
58	Simulating multiplexed SNP discovery rates using base-specific cleavage and mass spectrometry. Bioinformatics, 2007, 23, e5-e11.	4.1	25
59	Computing Fragmentation Trees from Metabolite Multiple Mass Spectrometry Data. Journal of Computational Biology, 2011, 18, 1383-1397.	1.6	25
60	Finding approximate gene clusters with Gecko 3. Nucleic Acids Research, 2016, 44, gkw843.	14.5	23
61	Sequencing from Compomers: Using Mass Spectrometry for DNAde novoSequencing of 200+ nt. Journal of Computational Biology, 2004, 11, 1110-1134.	1.6	22
62	Secondary ion mass spectrometry imaging and multivariate data analysis reveal coâ€aggregation patterns of ⟨i⟩Populus trichocarpa⟨/i⟩ leaf surface compounds on a micrometer scale. Plant Journal, 2018, 93, 193-206.	5.7	22
63	Cluster Editing. Lecture Notes in Computer Science, 2013, , 33-44.	1.3	22
64	Molecular Formula Identification Using Isotope Pattern Analysis and Calculation of Fragmentation Trees. Mass Spectrometry, 2014, 3, S0037-S0037.	0.6	20
65	Determination of Glycan Structure from Tandem Mass Spectra. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2011, 8, 976-986.	3.0	19
66	COCONUTâ€"An Efficient Tool for Estimating Copolymer Compositions from Mass Spectra. Analytical Chemistry, 2015, 87, 5223-5231.	6.5	19
67	D <scp>ecomp</scp> â€"from interpreting Mass Spectrometry peaks to solving the Money Changing Problem. Bioinformatics, 2008, 24, 591-593.	4.1	18
68	A Faster Fixed-Parameter Approach to Drawing Binary Tanglegrams. Lecture Notes in Computer Science, 2009, , 38-49.	1.3	17
69	Finding Maximum Colorful Subtrees in Practice. Journal of Computational Biology, 2013, 20, 311-321.	1.6	16
70	Decomposing Metabolomic Isotope Patterns. Lecture Notes in Computer Science, 2006, , 12-23.	1.3	16
71	Patching upX-trees. Annals of Combinatorics, 1999, 3, 1-12.	0.6	15
72	Determination of ¹⁵ N-Incorporation into Plant Proteins and their Absolute Quantitation: A New Tool to Study Nitrogen Flux Dynamics and Protein Pool Sizes Elicited by Plant–Herbivore Interactions. Journal of Proteome Research, 2012, 11, 4947-4960.	3.7	15

#	Article	lF	Citations
73	Fast alignment of fragmentation trees. Bioinformatics, 2012, 28, i265-i273.	4.1	14
74	The Generalized Robinson-Foulds Metric. Lecture Notes in Computer Science, 2013, , 156-169.	1.3	14
75	Analysis of different synthetic homopolymers by the use of a new calculation software for tandem mass spectra. Rapid Communications in Mass Spectrometry, 2011, 25, 1765-1778.	1.5	13
76	Automated bond order assignment as an optimization problem. Bioinformatics, 2011, 27, 619-625.	4.1	13
77	Exact and heuristic algorithms for weighted cluster editing. Computational Systems Bioinformatics / Life Sciences Society Computational Systems Bioinformatics Conference, 2007, 6, 391-401.	0.4	13
78	Efficient mass decomposition. , 2005, , .		11
79	Statistics for approximate gene clusters. BMC Bioinformatics, 2013, 14, S14.	2.6	11
80	Correcting mass shifts: A lock mass-free recalibration procedure for mass spectrometry imaging data. Analytical and Bioanalytical Chemistry, 2015, 407, 7603-7613.	3.7	11
81	De Novo Molecular Formula Annotation and Structure Elucidation Using SIRIUS 4. Methods in Molecular Biology, 2020, 2104, 185-207.	0.9	11
82	Swiftly Computing Center Strings. Lecture Notes in Computer Science, 2010, , 325-336.	1.3	11
83	Bad Clade Deletion Supertrees: A Fast and Accurate Supertree Algorithm. Molecular Biology and Evolution, 2017, 34, 2408-2421.	8.9	10
84	Combinatorial Approaches for Mass Spectra Recalibration. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2008, 5, 91-100.	3.0	9
85	Annotating Fragmentation Patterns. Lecture Notes in Computer Science, 2009, , 13-24.	1.3	9
86	Patchworks. Advances in Mathematics, 2001, 157, 1-21.	1.1	8
87	Extension and Robustness of Transitivity Clustering for Protein–Protein Interaction Network Analysis. Internet Mathematics, 2011, 7, 255-273.	0.7	8
88	Exact Algorithms for Cluster Editing: Evaluation and Experiments. , 2008, , 289-302.		8
89	Computation of Median Gene Clusters. Lecture Notes in Computer Science, 2008, , 331-345.	1.3	8
90	Going Weighted: Parameterized Algorithms for Cluster Editing. Lecture Notes in Computer Science, 2008, , 1-12.	1.3	8

#	Article	IF	CITATIONS
91	SAMPI: Protein Identification with Mass Spectra Alignments. BMC Bioinformatics, 2007, 8, 102.	2.6	7
92	Polynomial Supertree Methods Revisited. Advances in Bioinformatics, 2011, 2011, 1-21.	5.7	7
93	Munronia pinnata (Wall.) Theob.: Unveiling phytochemistry and dual inhibition of 5-lipoxygenase and microsomal prostaglandin E2 synthase (mPGES)-1. Journal of Ethnopharmacology, 2014, 151, 882-890.	4.1	7
94	Interpretation of the DOME Recommendations for Machine Learning in Proteomics and Metabolomics. Journal of Proteome Research, 2022, 21, 1204-1207.	3.7	7
95	Fragmentation Trees Reloaded. Lecture Notes in Computer Science, 2015, , 65-79.	1.3	6
96	Faster Mass Decomposition. Lecture Notes in Computer Science, 2013, , 45-58.	1.3	6
97	A Note on Maximal Hierarchies. Advances in Mathematics, 2000, 151, 270-282.	1.1	5
98	Mass spectra alignments and their significance. Journal of Discrete Algorithms, 2007, 5, 714-728.	0.7	5
99	On optimal comparability editing with applications to molecular diagnostics. BMC Bioinformatics, 2009, 10, S61.	2.6	5
100	Combinatorics of aliphatic amino acids. Die Naturwissenschaften, 2011, 98, 79-86.	1.6	5
101	Comment on: "An Efficient Method to Calculate the Aggregated Isotopic Distribution and Exact Center-Masses―by Jù⁄₄rgen Claesen, Piotr Dittwald, Tomasz Burzykowski, Dirk Valkenborg, J. Am. Soc. Mass Spectrom. 2012, 23, 753–763. Journal of the American Society for Mass Spectrometry, 2012, 23, 1826-1827.	2.8	5
102	New Statistical Models for Copolymerization. Polymers, 2016, 8, 240.	4.5	5
103	Abundance correction for mass discrimination effects in polymer mass spectra. Rapid Communications in Mass Spectrometry, 2016, 30, 1233-1241.	1.5	5
104	Speedy Colorful Subtrees. Lecture Notes in Computer Science, 2015, , 310-322.	1.3	5
105	Collecting reliable clades using the Greedy Strict Consensus Merger. PeerJ, 2016, 4, e2172.	2.0	5
106	Mass Difference Matching Unfolds Hidden Molecular Structures of Dissolved Organic Matter. Environmental Science & Environmenta	10.0	5
107	Swiftly Computing Center Strings. BMC Bioinformatics, 2011, 12, 106.	2.6	4
108	FlipCut Supertrees: Towards Matrix Representation Accuracy in Polynomial Time. Algorithmica, 2013, 67, 142-160.	1.3	4

#	Article	IF	Citations
109	Identifying gene clusters by discovering common intervals in indeterminate strings. BMC Genomics, 2014, 15, S2.	2.8	4
110	Studying Charge Migration Fragmentation of Sodiated Precursor Ions in Collision-Induced Dissociation at the Library Scale. Journal of the American Society for Mass Spectrometry, 2021, 32, 180-186.	2.8	4
111	A Golden Ratio Parameterized Algorithm for Cluster Editing. Lecture Notes in Computer Science, 2011, , 85-95.	1.3	4
112	Exponentially many supertrees. Applied Mathematics Letters, 2002, 15, 861-865.	2.7	3
113	Mass Spectra Alignments and Their Significance. Lecture Notes in Computer Science, 2005, , 429-441.	1.3	3
114	Computing bond orders in molecule graphs. Theoretical Computer Science, 2011, 412, 1184-1195.	0.9	3
115	Improved Fixed-Parameter Algorithms for Minimum-Flip Consensus Trees. ACM Transactions on Algorithms, 2012, 8, 1-17.	1.0	3
116	Finding Maximum Colorful Subtrees in Practice. Lecture Notes in Computer Science, 2012, , 213-223.	1.3	3
117	A note on the parameterized complexity of unordered maximum tree orientation. Discrete Applied Mathematics, 2012, 160, 1634-1638.	0.9	2
118	Computing Bond Types in Molecule Graphs. Lecture Notes in Computer Science, 2009, , 297-306.	1.3	2
119	Polynomial Supertree Methods Revisited. Lecture Notes in Computer Science, 2010, , 183-194.	1.3	2
120	Computing Fragmentation Trees from Metabolite Multiple Mass Spectrometry Data. Lecture Notes in Computer Science, 2011, , 377-391.	1.3	2
121	A FIXED-PARAMETER APPROACH FOR WEIGHTED CLUSTER EDITING. , 2007, , .		2
122	Drosophila melanogaster chemical ecology revisited: 2-D distribution maps of sex pheromones on whole virgin and mated flies by mass spectrometry imaging. BMC Zoology, 2020, 5, .	1.0	2
123	Markov Additive Chains and Applications to Fragment Statistics for Peptide Mass Fingerprinting. Lecture Notes in Computer Science, 2006, , 29-41.	1.3	2
124	Sequencing from Componers: The Puzzle. Theory of Computing Systems, 2006, 39, 455-471.	1.1	1
125	Counting glycans revisited. Journal of Mathematical Biology, 2014, 69, 799-816.	1.9	1
126	LifeStyle-Specific-Islands (LiSSI): Integrated Bioinformatics Platform for Genomic Island Analysis. Journal of Integrative Bioinformatics, 2017, 14, .	1.5	1

SEBASTIAN BöCKER

#	Article	IF	CITATIONS
127	Exploring the Limits of the Geometric Copolymerization Model. Polymers, 2017, 9, 101.	4.5	1
128	Unrooted Supertrees. Computational Biology, 2004, , 331-351.	0.2	1
129	Determination of Glycan Structure from Tandem Mass Spectra. Lecture Notes in Computer Science, 2009, , 258-267.	1.3	1
130	FlipCut Supertrees: Towards Matrix Representation Accuracy in Polynomial Time. Lecture Notes in Computer Science, 2011, , 37-48.	1.3	1
131	Ten Times Eighteen. Journal of Information Processing, 2015, 23, 258-264.	0.4	O
132	Inferring Peptide Composition from Molecular Formulas. Lecture Notes in Computer Science, 2009, , 277-286.	1.3	0