
Richard E Randall

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6847639/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genetic Lesions of Type I Interferon Signalling in Human Antiviral Immunity. Trends in Genetics, 2021, 37, 46-58.	6.7	58
2	Direct Antiviral Activity of IFN-Stimulated Genes Is Responsible for Resistance to Paramyxoviruses in ISG15-Deficient Cells. Journal of Immunology, 2020, 205, 261-271.	0.8	12
3	Innate Intracellular Antiviral Responses Restrict the Amplification of Defective Virus Genomes of Parainfluenza Virus 5. Journal of Virology, 2020, 94, .	3.4	5
4	Unusual, stable replicating viruses generated from mumps virus cDNA clones. PLoS ONE, 2019, 14, e0219168.	2.5	5
5	Analysis of Paramyxovirus Transcription and Replication by High-Throughput Sequencing. Journal of Virology, 2019, 93, .	3.4	35
6	The switch between acute and persistent paramyxovirus infection caused by single amino acid substitutions in the RNA polymerase P subunit. PLoS Pathogens, 2019, 15, e1007561.	4.7	23
7	Severe type I interferonopathy and unrestrained interferon signaling due to a homozygous germline mutation in <i>STAT2</i> . Science Immunology, 2019, 4, .	11.9	80
8	Modular cell-based platform for high throughput identification of compounds that inhibit a viral interferon antagonist of choice. Antiviral Research, 2018, 150, 79-92.	4.1	13
9	Mini viral RNAs act as innate immune agonists during influenza virus infection. Nature Microbiology, 2018, 3, 1234-1242.	13.3	96
10	Within host RNA virus persistence: mechanisms and consequences. Current Opinion in Virology, 2017, 23, 35-42.	5.4	79
11	Targeting Pattern Recognition Receptors (PRR) for Vaccine Adjuvantation: From Synthetic PRR Agonists to the Potential of Defective Interfering Particles of Viruses. Viruses, 2017, 9, 186.	3.3	61
12	Human interactome of the influenza B virus NS1 protein. Journal of General Virology, 2017, 98, 2267-2273.	2.9	21
13	Bluetongue Virus NS4 Protein Is an Interferon Antagonist and a Determinant of Virus Virulence. Journal of Virology, 2016, 90, 5427-5439.	3.4	50
14	Identification of Novel Inhibitors of the Type I Interferon Induction Pathway Using Cell-Based High-Throughput Screening. Journal of Biomolecular Screening, 2016, 21, 978-988.	2.6	9
15	Human IFIT1 Inhibits mRNA Translation of Rubulaviruses but Not Other Members of the Paramyxoviridae Family. Journal of Virology, 2016, 90, 9446-9456.	3.4	37
16	Genome Sequence of the Parainfluenza Virus 5 Strain That Persistently Infects AGS Cells. Genome Announcements, 2016, 4, .	0.8	4
17	Generation of Recombinant Oropouche Viruses Lacking the Nonstructural Protein NSm or NSs. Journal of Virology, 2016, 90, 2616-2627.	3.4	50
18	Influenza virus activation of the interferon system. Virus Research, 2015, 209, 11-22.	2.2	164

RICHARD E RANDALL

#	Article	IF	CITATIONS
19	Abrogation of the Interferon Response Promotes More Efficient Human Cytomegalovirus Replication. Journal of Virology, 2015, 89, 1479-1483.	3.4	19
20	Human IFNAR2 deficiency: Lessons for antiviral immunity. Science Translational Medicine, 2015, 7, 307ra154.	12.4	190
21	Generation of Replication-Proficient Influenza Virus NS1 Point Mutants with Interferon-Hyperinducer Phenotype. PLoS ONE, 2014, 9, e98668.	2.5	3
22	Inhibitors of the Interferon Response Enhance Virus Replication In Vitro. PLoS ONE, 2014, 9, e112014.	2.5	62
23	Stability of the Parainfluenza Virus 5 Genome Revealed by Deep Sequencing of Strains Isolated from Different Hosts and following Passage in Cell Culture. Journal of Virology, 2014, 88, 3826-3836.	3.4	40
24	Activation of the Interferon Induction Cascade by Influenza A Viruses Requires Viral RNA Synthesis and Nuclear Export. Journal of Virology, 2014, 88, 3942-3952.	3.4	38
25	An Unbiased Genetic Screen Reveals the Polygenic Nature of the Influenza Virus Anti-Interferon Response. Journal of Virology, 2014, 88, 4632-4646.	3.4	45
26	The Human Interferon-Induced MxA Protein Inhibits Early Stages of Influenza A Virus Infection by Retaining the Incoming Viral Genome in the Cytoplasm. Journal of Virology, 2013, 87, 13053-13058.	3.4	98
27	STAT2 deficiency and susceptibility to viral illness in humans. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3053-3058.	7.1	222
28	LGP2 Plays a Critical Role in Sensitizing mda-5 to Activation by Double-Stranded RNA. PLoS ONE, 2013, 8, e64202.	2.5	78
29	Paramyxovirus V Proteins Interact with the RNA Helicase LGP2 To Inhibit RIG-I-Dependent Interferon Induction. Journal of Virology, 2012, 86, 3411-3421.	3.4	112
30	Influenza Virus A Infection of Human Monocyte and Macrophage Subpopulations Reveals Increased Susceptibility Associated with Cell Differentiation. PLoS ONE, 2012, 7, e29443.	2.5	77
31	Innate Sensing of HIV-Infected Cells. PLoS Pathogens, 2011, 7, e1001284.	4.7	171
32	A Transient Homotypic Interaction Model for the Influenza A Virus NS1 Protein Effector Domain. PLoS ONE, 2011, 6, e17946.	2.5	43
33	Loss of function of the influenza A virus NS1 protein promotes apoptosis but this is not due to a failure to activate phosphatidylinositol 3-kinase (PI3K). Virology, 2010, 396, 94-105.	2.4	54
34	Structural insights into phosphoinositide 3-kinase activation by the influenza A virus NS1 protein. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 1954-1959.	7.1	95
35	The Regulation of Type I Interferon Production by Paramyxoviruses. Journal of Interferon and Cytokine Research, 2009, 29, 539-548.	1.2	76
36	CDK/ERK-mediated phosphorylation of the human influenza A virus NS1 protein at threonine-215. Virology, 2009, 383, 6-11.	2.4	68

RICHARD E RANDALL

#	Article	IF	CITATIONS
37	Structure of an avian influenza A virus NS1 protein effector domain. Virology, 2008, 378, 1-5.	2.4	79
38	Interferons and viruses: an interplay between induction, signalling, antiviral responses and virus countermeasures. Journal of General Virology, 2008, 89, 1-47.	2.9	1,364
39	The multifunctional NS1 protein of influenza A viruses. Journal of General Virology, 2008, 89, 2359-2376.	2.9	904
40	Binding of Influenza A Virus NS1 Protein to the Inter-SH2 Domain of p85Î ² Suggests a Novel Mechanism for Phosphoinositide 3-Kinase Activation. Journal of Biological Chemistry, 2008, 283, 1372-1380.	3.4	56
41	Improved growth of enteric adenovirus type 40 in a modified cell line that can no longer respond to interferon stimulation. Journal of General Virology, 2007, 88, 71-76.	2.9	27
42	mda-5, but not RIG-I, is a common target for paramyxovirus V proteins. Virology, 2007, 359, 190-200.	2.4	269
43	Influenza A virus NS1 protein binds p85beta and activates phosphatidylinositol-3-kinase signaling. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 14194-14199.	7.1	256
44	The NPro Product of Bovine Viral Diarrhea Virus Inhibits DNA Binding by Interferon Regulatory Factor 3 and Targets It for Proteasomal Degradation. Journal of Virology, 2006, 80, 11723-11732.	3.4	222
45	Analysis of the pH Requirement for Membrane Fusion of Different Isolates of the Paramyxovirus Parainfluenza Virus 5. Journal of Virology, 2006, 80, 3071-3077.	3.4	17
46	Inhibition of Interferon Signaling by the New York 99 Strain and Kunjin Subtype of West Nile Virus Involves Blockage of STAT1 and STAT2 Activation by Nonstructural Proteins. Journal of Virology, 2005, 79, 1934-1942.	3.4	274
47	Bunyamwera Virus Nonstructural Protein NSs Counteracts Interferon Regulatory Factor 3-Mediated Induction of Early Cell Death. Journal of Virology, 2003, 77, 7999-8008.	3.4	84
48	Bunyamwera Bunyavirus Nonstructural Protein NSs Counteracts the Induction of Alpha/Beta Interferon. Journal of Virology, 2002, 76, 7949-7955.	3.4	192
49	The V Proteins of Simian Virus 5 and Other Paramyxoviruses Inhibit Induction of Interferon-β. Virology, 2002, 303, 33-46.	2.4	177
50	Recovery of Paramyxovirus Simian Virus 5 with a V Protein Lacking the Conserved Cysteine-rich Domain: The Multifunctional V Protein Blocks both Interferon-β Induction and Interferon Signaling. Virology, 2002, 303, 15-32.	2.4	168
51	Vectors for the expression of tagged proteins in Schizosaccharomyces pombe. Gene, 1998, 221, 59-68.	2.2	212