Can Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6846228/publications.pdf

Version: 2024-02-01

607 607 607 44797 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Photo-induced carbon dioxide reduction on hexagonal tungsten oxide via an oxygen vacancies-involved process. Chinese Chemical Letters, 2023, 34, 107200.	4.8	2
2	Enormous Promotion of Photocatalytic Activity through the Use of Near-Single Layer Covalent Organic Frameworks. CCS Chemistry, 2022, 4, 2429-2439.	4.6	25
3	Heterostructure of Ta3N5 nanorods and CaTaO2N nanosheets fabricated using a precursor template to boost water splitting under visible light. Journal of Energy Chemistry, 2022, 67, 27-33.	7.1	14
4	Formation of multifaceted nano-groove structure on rutile TiO2 photoanode for efficient electron-hole separation and water splitting. Journal of Energy Chemistry, 2022, 65, 19-25.	7.1	16
5	Methanol Steam Reforming over ZnO/ZnZrOx: Performance Enhanced with a Cooperative Effect. ChemCatChem, 2022, 14, .	1.8	5
6	Atomically unraveling the dependence of surface microstructure on plasmon-induced hydrogen evolution on Au/SrTiO3. Nano Energy, 2022, 91, 106638.	8.2	16
7	Spatial Separation of Photogenerated Charges on Wellâ€Defined Bismuth Vanadate Square Nanocrystals. Small, 2022, 18, e2103245.	5.2	23
8	Boosting Electrochemical Water Oxidation on NiFe (oxy) Hydroxides by Constructing Schottky Junction toward Water Electrolysis under Industrial Conditions. Small, 2022, 18, e2105544.	5.2	38
9	Scalable solar water splitting using particulate photocatalysts. Current Opinion in Green and Sustainable Chemistry, 2022, 33, 100577.	3.2	7
10	Photo-assisted sequential assembling of uniform metal nanoclusters on semiconductor support. IScience, 2022, 25, 103572.	1.9	8
11	Designing a Z-scheme system based on photocatalyst panels towards separated hydrogen and oxygen production from overall water splitting. Catalysis Science and Technology, 2022, 12, 572-578.	2.1	4
12	Unraveling of cocatalysts photodeposited selectively on facets of BiVO4 to boost solar water splitting. Nature Communications, 2022, 13, 484.	5.8	156
13	Unraveling Chargeâ€Separation Mechanisms in Photocatalyst Particles by Spatially Resolved Surface Photovoltage Techniques. Angewandte Chemie, 2022, 134, .	1.6	9
14	Deeper Insight into the Role of Organic Ammonium Cations in Reducing Surface Defects of the Perovskite Film. Angewandte Chemie - International Edition, 2022, 61, .	7.2	27
15	Deeper Insight into the Role of Organic Ammonium Cations in Reducing Surface Defects of the Perovskite Film. Angewandte Chemie, 2022, 134, .	1.6	4
16	Unraveling Chargeâ€Separation Mechanisms in Photocatalyst Particles by Spatially Resolved Surface Photovoltage Techniques. Angewandte Chemie - International Edition, 2022, 61, .	7.2	44
17	Urea Derivativeâ€Promoted CsPbl ₂ Br Perovskite Solar Cells with High Openâ€Circuit Voltage. Solar Rrl, 2022, 6, 2101057.	3.1	10
18	Modulating acid-base properties of ZIF-8 by thermal-induced structure evolution. Journal of Catalysis, 2022, 406, 165-173.	3.1	11

#	Article	IF	CITATIONS
19	Highly dispersed Cd cluster supported on TiO2 as an efficient catalyst for CO2 hydrogenation to methanol. Chinese Journal of Catalysis, 2022, 43, 761-770.	6.9	24
20	V–O–Ag Linkages in VAgO <i></i> Mixed Oxides for the Selective Oxidation of <i>p</i> -Xylene to <i>p</i> -Methyl Benzaldehyde. ACS Catalysis, 2022, 12, 3323-3332.	5.5	5
21	Surface Phosphate Functionalization for Boosting Plasmon-Induced Water Oxidation on Au/TiO ₂ . Journal of Physical Chemistry C, 2022, 126, 5167-5174.	1.5	7
22	Strategies and Methods of Modulating Nitrogen-Incorporated Oxide Photocatalysts for Promoted Water Splitting. Accounts of Materials Research, 2022, 3, 449-460.	5.9	20
23	Nonalloy Model-Based Ternary Organic Solar Cells. ACS Applied Materials & Samp; Interfaces, 2022, 14, 12461-12468.	4.0	8
24	Activating a Semiconductor–Liquid Junction via Laserâ€Derived Dual Interfacial Layers for Boosted Photoelectrochemical Water Splitting. Advanced Materials, 2022, 34, e2201140.	11.1	34
25	Photoelectrocatalytic degradation of refractory pollutants over WO3/W network photoelectrode with heterophase junction for enhancing mass transportation and charge separation. Applied Catalysis B: Environmental, 2022, 309, 121292.	10.8	23
26	EPR study of charge separation associated states and reversibility of surface bound superoxide radicals in SrTiO3 photocatalyst. Journal of Energy Chemistry, 2022, 70, 388-393.	7.1	21
27	Relation between Water Oxidation Activity and Coordination Environment of C,N-Coordinated Mononuclear Co Catalyst. ACS Catalysis, 2022, 12, 491-496.	5.5	22
28	Recent advances and perspectives for solar-driven water splitting using particulate photocatalysts. Chemical Society Reviews, 2022, 51, 3561-3608.	18.7	273
29	The Carbon Source Effect on the Production of Ralstonia eutropha H16 and Proteomic Response Underlying Targeting the Bioconversion with Solar Fuels. Applied Biochemistry and Biotechnology, 2022, 194, 3212-3227.	1.4	1
30	Tuning Exciton Recombination Pathways in Inorganic Bismuth-Based Perovskite for Broadband Emission. Energy Material Advances, 2022, 2022, .	4.7	22
31	Tip-induced directional charge separation on one-dimensional BiVO4 nanocones for asymmetric light absorption. Journal of Energy Chemistry, 2022, 72, 326-332.	7.1	4
32	Enhancement of Plasmonâ€Induced Photoelectrocatalytic Water Oxidation over Au/TiO ₂ with Lithium Intercalation. Angewandte Chemie, 2022, 134, .	1.6	1
33	Structural Engineering of Anthracene Diimide Polymers for Molecular Ordering Manipulation. Macromolecules, 2022, 55, 4102-4110.	2.2	4
34	Enhancement of Plasmonâ€Induced Photoelectrocatalytic Water Oxidation over Au/TiO ₂ with Lithium Intercalation. Angewandte Chemie - International Edition, 2022, 61, .	7.2	23
35	A Dualâ€Ligand Strategy to Regulate the Nucleation and Growth of Lead Chromate Photoanodes for Photoelectrochemical Water Splitting. Advanced Materials, 2022, 34, e2110610.	11.1	14
36	Coupling effect between hole storage and interfacial charge transfer over ultrathin CoPi-modified hematite photoanodes. Dalton Transactions, 2022, 51, 9247-9255.	1.6	4

#	Article	IF	CITATIONS
37	Aromatic bromination with hydrogen production on organic-inorganic hybrid perovskite-based photocatalysts under visible light irradiation. Chinese Journal of Catalysis, 2022, 43, 1805-1811.	6.9	5
38	Modulating surface charges of bismuth tantalum oxychloride nanoplates for promoting photogenerated charge separation. Journal of Materials Chemistry A, 2022, 10, 14293-14299.	5.2	5
39	Insights into the Selectivity Determinant and Rate-Determining Step of CO ₂ Hydrogenation to Methanol. Journal of Physical Chemistry C, 2022, 126, 10399-10407.	1.5	21
40	Tuning the Anisotropic Facet of Lead Chromate Photocatalysts to Promote Spatial Charge Separation. Angewandte Chemie - International Edition, 2022, 61, .	7.2	20
41	Platinum Group Metal Catalyst (RuO _{<i>x</i>} , PtO _{<i>x</i>} , and) Tj ETQq1 1 0.784314 Solar Thermochemical CO ₂ Splitting. ACS Catalysis, 2022, 12, 7719-7736.	rgBT /Ove 5.5	erlock 10 Tf 5 16
42	Understanding the factors governing the water oxidation reaction pathway of mononuclear and binuclear cobalt phthalocyanine catalysts. Chemical Science, 2022, 13, 8797-8803.	3.7	3
43	Atomically dispersed Ptn+ species as highly active sites in Pt/In2O3 catalysts for methanol synthesis from CO2 hydrogenation. Journal of Catalysis, 2021, 394, 236-244.	3.1	124
44	Interfacial Modulation with Aluminum Oxide for Efficient Plasmonâ€Induced Water Oxidation. Advanced Functional Materials, 2021, 31, 2005688.	7.8	33
45	Multiple methoxy-substituted hole transporter for inverted perovskite solar cells. Journal of Energy Chemistry, 2021, 56, 127-131.	7.1	4
46	Probing of coupling effect induced plasmonic charge accumulation for water oxidation. National Science Review, 2021, 8, nwaa151.	4.6	30
47	Intrinsic photocatalytic water oxidation activity of Mn-doped ferroelectric BiFeO3. Chinese Journal of Catalysis, 2021, 42, 945-952.	6.9	21
48	Surface assembly of cobalt species for simultaneous acceleration of interfacial charge separation and catalytic reactions on Cd0.9Zn0.1S photocatalyst. Chinese Journal of Catalysis, 2021, 42, 1004-1012.	6.9	10
49	Unveiling the Hydration Structure of Ferrihydrite for Hole Storage in Photoelectrochemical Water Oxidation. Angewandte Chemie - International Edition, 2021, 60, 6691-6698.	7.2	33
50	Unveiling the Hydration Structure of Ferrihydrite for Hole Storage in Photoelectrochemical Water Oxidation. Angewandte Chemie, 2021, 133, 6765-6772.	1.6	7
51	Noble-Metal Based Random Alloy and Intermetallic Nanocrystals: Syntheses and Applications. Chemical Reviews, 2021, 121, 736-795.	23.0	269
52	Divergent Asymmetric Reactions of ortho â€Quinone Methides with αâ€Thiocyanato Indanones for the Synthesis of Spiro†and Fusedâ€Indanones. Chemistry - A European Journal, 2021, 27, 735-739.	1.7	11
53	Interface engineering with an AlO _x dielectric layer enabling an ultrastable Ta ₃ N ₅ photoanode for photoelectrochemical water oxidation. Journal of Materials Chemistry A, 2021, 9, 11285-11290.	5.2	17
54	Reducing non-radiative recombination energy loss <i>via</i> a fluorescence intensifier for efficient and stable ternary organic solar cells. Materials Horizons, 2021, 8, 2335-2342.	6.4	11

#	Article	IF	CITATIONS
55	Halide perovskites for light emission and artificial photosynthesis: Opportunities, challenges, and perspectives. EcoMat, 2021, 3, e12074.	6.8	29
56	Water-initiated hydrocarboxylation of terminal alkynes with CO ₂ and hydrosilane. Chemical Communications, 2021, 57, 1230-1233.	2.2	7
57	Achieving selective photocatalytic CO ₂ reduction to CO on bismuth tantalum oxyhalogen nanoplates. Journal of Materials Chemistry A, 2021, 9, 19631-19636.	5.2	41
58	Controllable stereoinversion in DNA-catalyzed olefin cyclopropanation <i>via</i> cofactor modification. Chemical Science, 2021, 12, 7918-7923.	3.7	6
59	Mechanistic Understanding of Efficient Photocatalytic H ₂ Evolution on Twoâ€Dimensional Layered Lead Iodide Hybrid Perovskites. Angewandte Chemie - International Edition, 2021, 60, 7376-7381.	7.2	48
60	Mechanistic Understanding of Efficient Photocatalytic H ₂ Evolution on Twoâ€Dimensional Layered Lead Iodide Hybrid Perovskites. Angewandte Chemie, 2021, 133, 7452-7457.	1.6	9
61	Efficiency Accreditation and Testing Protocols for Particulate Photocatalysts toward Solar Fuel Production. Joule, 2021, 5, 344-359.	11.7	165
62	Crystallinity and Orientation Manipulation of Anthracene Diimide Polymers for Allâ€Polymer Solar Cells. Advanced Functional Materials, 2021, 31, 2011049.	7.8	12
63	Solventâ€Actuated Selfâ€Assembly of Amphiphilic Holeâ€Transporting Polymer Enables Bottomâ€Surface Passivation of Perovskite Film for Efficient Photovoltaics. Advanced Energy Materials, 2021, 11, 2100493.	10.2	21
64	Shallow Oxygen Substitution Defect to Deeper Defect Transformation Mechanism in Ta ₃ N ₅ under Light Irradiation. Journal of Physical Chemistry Letters, 2021, 12, 3698-3704.	2.1	3
65	Surface Passivation Effect of Ferrihydrite with Hole-Storage Ability in Water Oxidation on BiVO ₄ Photoanode. Journal of Physical Chemistry C, 2021, 125, 8369-8375.	1.5	15
66	Unassisted Highly Selective Gas-Phase CO ₂ Reduction with a Plasmonic Au/p-GaN Photocatalyst Using H ₂ O as an Electron Donor. ACS Energy Letters, 2021, 6, 1849-1856.	8.8	49
67	Highly Selective Detection of K ⁺ Based on a Dimerized G-Quadruplex DNAzyme. Analytical Chemistry, 2021, 93, 6907-6912.	3.2	11
68	CO2 hydrogenation to methanol on ZnO-ZrO2 solid solution catalysts with ordered mesoporous structure. Journal of Catalysis, 2021, 396, 242-250.	3.1	47
69	Introducing special issue on photocatalysis and photoelectrochemistry. Journal of Chemical Physics, 2021, 154, 190401.	1.2	0
70	Synthesis of Bifunctional Porphyrin Polymers for Catalytic Conversion of Dilute CO ₂ to Cyclic Carbonates. ACS Applied Materials & Interfaces, 2021, 13, 29522-29531.	4.0	53
71	Efficient non-fullerene organic solar cells with low-temperature solution-processing ferrous oxides as hole transport layer. Organic Electronics, 2021, 93, 106139.	1.4	11
72	Mechanistic Studies on Photocatalytic Overall Water Splitting over Ga ₂ O ₃ -Based Photocatalysts by <i>Operando</i> MS-FTIR Spectroscopy. Journal of Physical Chemistry Letters, 2021, 12, 6029-6033.	2.1	19

#	Article	IF	CITATIONS
73	Palladium-catalyzed enantioselective linear allylic alkylation of vinyl benzoxazinanones: An inner-sphere mechanism. Chinese Journal of Catalysis, 2021, 42, 1227-1237.	6.9	8
74	Blocking the non-selective sites through surface plasmon-induced deposition of metal oxide on Au/TiO2 for CO-PROX reaction. Chem Catalysis, 2021, 1, 456-466.	2.9	17
75	Highly Efficient Degradation of Persistent Pollutants with 3D Nanocone TiO ₂ -Based Photoelectrocatalysis. Journal of the American Chemical Society, 2021, 143, 13664-13674.	6.6	158
76	Unassisted Photoelectrochemical Cell with Multimediator Modulation for Solar Water Splitting Exceeding 4% Solar-to-Hydrogen Efficiency. Journal of the American Chemical Society, 2021, 143, 12499-12508.	6.6	157
77	Biomimetic approach to the catalytic enantioselective synthesis of tetracyclic isochroman. Nature Communications, 2021, 12, 4958.	5.8	14
78	Development of Sn2+-based oxyfluoride photocatalyst with visible light response of ca. 650Ânm via strengthened hybridization of Sn 5s and O 2p orbitals. Journal of Energy Chemistry, 2021, 63, 385-390.	7.1	9
79	Palladium-Catalyzed Asymmetric Allylic C–H Functionalization for the Synthesis of Hydroquinolines through Intermolecular [4+2] Cycloadditions. ACS Catalysis, 2021, 11, 10913-10922.	5.5	15
80	Direct synthesis of p-methyl benzaldehyde from acetaldehyde via an organic amine-catalyzed dehydrogenation mechanism. IScience, 2021, 24, 103028.	1.9	1
81	Cell-free chemoenzymatic starch synthesis from carbon dioxide. Science, 2021, 373, 1523-1527.	6.0	274
82	Boosting photocatalytic water oxidation by surface plasmon resonance of AgxAu1â^2x alloy nanoparticles. Nano Energy, 2021, 87, 106189.	8.2	52
83	Room Temperature Allenation of Terminal Alkynes with Aldehydes. Angewandte Chemie - International Edition, 2021, 60, 25708-25713.	7.2	10
84	Pd modified defective HNb3O8 with dual active sites for photocatalytic coproduction of hydrogen fuel and value-added chemicals. Applied Catalysis B: Environmental, 2021, 296, 120381.	10.8	34
85	Dopant-free polymer/2D/3D perovskite solar cells with high stability. Nano Energy, 2021, 90, 106521.	8.2	19
86	Isomeric anthracene diimide polymers. Chemical Science, 2021, 12, 2848-2852.	3.7	17
87	Crystal facet modulation of Bi ₂ WO ₆ microplates for spatial charge separation and inhibiting reverse reaction. Chemical Communications, 2021, 57, 11637-11640.	2.2	17
88	The promoting role of Ga in ZnZrOx solid solution catalyst for CO2 hydrogenation to methanol. Journal of Catalysis, 2021, 404, 383-392.	3.1	45
89	Liberating photoinhibition through nongenetic drainage of electrons from photosynthesis. Natural Sciences, 2021, 1, e20210038.	1.0	8
90	Relation Between Coordination and Lewisâ€Acid Property of MOFâ€Derived Mononuclear Zn(II) Catalyst Toward Epoxide Hydroxylation. ChemCatChem, 2021, 13, 5236-5242.	1.8	6

#	Article	IF	Citations
91	Visualizing the Spatial Heterogeneity of Electron Transfer on a Metallic Nanoplate Prism. Nano Letters, 2021, 21, 8901-8909.	4.5	13
92	Ultrathin Cobalt Oxide Interlayer Facilitated Hole Storage for Sustained Water Oxidation over Composited Tantalum Nitride Photoanodes. ACS Catalysis, 2021, 11, 12736-12744.	5.5	35
93	Hydroxylated non-fullerene acceptor for highly efficient inverted perovskite solar cells. Energy and Environmental Science, 2021, 14, 6536-6545.	15.6	33
94	Construction of a gradient-type 2D/3D perovskite structure for subsurface passivation and energy-level alignment of an MAPbl ₃ film. Journal of Materials Chemistry A, 2021, 9, 26086-26094.	5.2	12
95	Identifying the Role of the Local Charge Density on the Hydrogen Evolution Reaction of the Photoelectrode. Journal of Physical Chemistry Letters, 2021, 12, 10829-10836.	2.1	8
96	Lead-free B-site bimetallic perovskite photocatalyst for efficient benzylic C–H bond activation. Cell Reports Physical Science, 2021, 2, 100656.	2.8	32
97	Cationic Porphyrin-Mediated G-Quadruplex DNA Oxidative Damage: Regulated by the Initial Interplay between DNA and TMPyP4. Biochemistry, 2021, 60, 3707-3713.	1.2	5
98	A Spirobixantheneâ€Based Dendrimeric Holeâ€Transporting Material for Perovskite Solar Cells. Solar Rrl, 2020, 4, 1900367.	3.1	10
99	Investigation on the Influence of Sc Ions Doping on the Structure and Performance of Ta 3 N 5 Photocatalyst for Water Oxidation under Visible Light Irradiation. Solar Rrl, 2020, 4, 1900445.	3.1	13
100	Surfaceâ€Polarityâ€Induced Spatial Charge Separation Boosts Photocatalytic Overall Water Splitting on GaN Nanorod Arrays. Angewandte Chemie - International Edition, 2020, 59, 935-942.	7.2	89
101	Carbon nitride embedded with transition metals for selective electrocatalytic CO2 reduction. Applied Catalysis B: Environmental, 2020, 268, 118391.	10.8	64
102	Surfaceâ€Polarityâ€Induced Spatial Charge Separation Boosts Photocatalytic Overall Water Splitting on GaN Nanorod Arrays. Angewandte Chemie, 2020, 132, 945-952.	1.6	22
103	Carboxylation of Toluene with CO2â€derived Dimethyl Carbonate over Amorphous Tiâ^'Zr Mixedâ€metal Oxide Catalysts. ChemCatChem, 2020, 12, 95-99.	1.8	2
104	Internalâ€Fieldâ€Enhanced Charge Separation in a Singleâ€Domain Ferroelectric PbTiO ₃ Photocatalyst. Advanced Materials, 2020, 32, e1906513.	11.1	121
105	Advanced space- and time-resolved techniques for photocatalyst studies. Chemical Communications, 2020, 56, 1007-1021.	2.2	50
106	Efficient hydrogen peroxide synthesis by metal-free polyterthiophene <i>via</i> photoelectrocatalytic dioxygen reduction. Energy and Environmental Science, 2020, 13, 238-245.	15.6	146
107	Cobaltâ€Catalyzed Regio―and Stereoselective Hydroboration of Allenes. Angewandte Chemie - International Edition, 2020, 59, 6278-6283.	7.2	34
108	High-Performance Solar Redox Flow Battery toward Efficient Overall Splitting of Hydrogen Sulfide. ACS Energy Letters, 2020, 5, 597-603.	8.8	25

#	Article	IF	CITATIONS
109	Highly Efficient Cyclic Dinucleotide Based Artificial Metalloribozymes for Enantioselective Friedel–Crafts Reactions in Water. Angewandte Chemie, 2020, 132, 3472-3477.	1.6	1
110	Highly Efficient Cyclic Dinucleotide Based Artificial Metalloribozymes for Enantioselective Friedel–Crafts Reactions in Water. Angewandte Chemie - International Edition, 2020, 59, 3444-3449.	7.2	8
111	Unraveling the Kinetics of Photocatalytic Water Oxidation on WO ₃ . Journal of Physical Chemistry Letters, 2020, 11, 412-418.	2.1	21
112	A Novel Double Perovskite Oxide Semiconductor Sr ₂ CoWO ₆ as Bifunctional Photocatalyst for Photocatalytic Oxygen and Hydrogen Evolution Reactions from Water under Visible Light Irradiation. Solar Rrl, 2020, 4, 1900456.	3.1	36
113	Carbon Encapsulation of Organic–Inorganic Hybrid Perovskite toward Efficient and Stable Photoâ€Electrochemical Carbon Dioxide Reduction. Advanced Energy Materials, 2020, 10, 2002105.	10.2	44
114	Surface state modulation for size-controllable photodeposition of noble metal nanoparticles on semiconductors. Journal of Materials Chemistry A, 2020, 8, 21094-21102.	5.2	19
115	Reducing the surface defects of Ta ₃ N ₅ photoanode towards enhanced photoelectrochemical water oxidation. Journal of Materials Chemistry A, 2020, 8, 23274-23283.	5.2	16
116	Regulation of Ferroelectric Polarization to Achieve Efficient Charge Separation and Transfer in Particulate RuO ₂ /BiFeO ₃ for High Photocatalytic Water Oxidation Activity. Small, 2020, 16, e2003361.	5.2	51
117	The Polarization Effect in Surfaceâ€Plasmonâ€Induced Photocatalysis on Au/TiO ₂ Nanoparticles. Angewandte Chemie - International Edition, 2020, 59, 18218-18223.	7.2	78
118	The Polarization Effect in Surfaceâ€Plasmonâ€Induced Photocatalysis on Au/TiO ₂ Nanoparticles. Angewandte Chemie, 2020, 132, 18375-18380.	1.6	22
119	Interfacial synergy of Pd sites and defective BiOBr for promoting the solar-driven selective oxidation of toluene. Journal of Materials Chemistry A, 2020, 8, 17657-17669.	5.2	74
120	Oxygen vacancy engineering with flame heating approach towards enhanced photoelectrochemical water oxidation on WO3 photoanode. Nano Energy, 2020, 77, 105190.	8.2	65
121	Water-stable Mn-based MOF nanosheet as robust visible-light-responsive photocatalyst in aqueous solution. Science China Chemistry, 2020, 63, 1756-1760.	4.2	14
122	Sr ₂ CoTaO ₆ Double Perovskite Oxide as a Novel Visible-Light-Absorbing Bifunctional Photocatalyst for Photocatalytic Oxygen and Hydrogen Evolution Reactions. ACS Sustainable Chemistry and Engineering, 2020, 8, 14190-14197.	3.2	37
123	Gradient tantalum-doped hematite homojunction photoanode improves both photocurrents and turn-on voltage for solar water splitting. Nature Communications, 2020, 11, 4622.	5.8	133
124	Simultaneous hole transport and defect passivation enabled by a dopant-free single polymer for efficient and stable perovskite solar cells. Journal of Materials Chemistry A, 2020, 8, 21036-21043.	5.2	23
125	Nonfullerene Bulk Heterojunctionâ€Based Photocathodes for Highly Efficient Solar Hydrogen Production in Acidic and Neutral Solutions. Advanced Functional Materials, 2020, 30, 2003399.	7.8	19
126	The noncovalent dimerization of a G-quadruplex/hemin DNAzyme improves its biocatalytic properties. Chemical Science, 2020, 11, 8846-8853.	3.7	24

#	Article	IF	CITATIONS
127	Visibleâ€Lightâ€Driven Photocatalytic Hydrogen Production on Cd _{0.5} Zn _{0.5} S Nanorods with an Apparent Quantum Efficiency Exceeding 80%. Advanced Functional Materials, 2020, 30, 2003731.	7.8	76
128	Allylsilane Reagentâ€Controlled Divergent Asymmetric Catalytic Reactions of 2â€Naphthoquinoneâ€1â€methide. Chemistry - A European Journal, 2020, 26, 14173-14180.	1.7	9
129	Hydrogenation of Carbon Dioxide to Methanol over Nonâ^'Cuâ€based Heterogeneous Catalysts. ChemSusChem, 2020, 13, 6160-6181.	3.6	90
130	Photoinduced Surface Activation of Semiconductor Photocatalysts under Reaction Conditions: A Commonly Overlooked Phenomenon in Photocatalysis. ACS Catalysis, 2020, 10, 5941-5948.	5.5	39
131	Anchoring of black phosphorus quantum dots onto WO ₃ nanowires to boost photocatalytic CO ₂ conversion into solar fuels. Chemical Communications, 2020, 56, 7777-7780.	2.2	57
132	Dion-Jacobson 2D-3D perovskite solar cells with improved efficiency and stability. Nano Energy, 2020, 75, 104892.	8.2	99
133	Sr ₂ NiWO ₆ Double Perovskite Oxide as a Novel Visible-Light-Responsive Water Oxidation Photocatalyst. ACS Applied Materials & Interfaces, 2020, 12, 25938-25948.	4.0	44
134	Enantioselective Olefin Cyclopropanation with G-Quadruplex DNA-Based Biocatalysts. ACS Catalysis, 2020, 10, 6561-6567.	5.5	15
135	Effects of the interfacial defects in Au/ TiO2 on plasmon-induced water oxidation. Journal of Chemical Physics, 2020, 152, 194702.	1.2	14
136	Direct and indirect Z-scheme heterostructure-coupled photosystem enabling cooperation of CO2 reduction and H2O oxidation. Nature Communications, 2020, 11, 3043.	5.8	200
137	Iron/Quinone-based all-in-one solar rechargeable flow cell for highly efficient solar energy conversion and storage. Nano Energy, 2020, 76, 104907.	8.2	12
138	A Hydrogen Farm Strategy for Scalable Solar Hydrogen Production with Particulate Photocatalysts. Angewandte Chemie - International Edition, 2020, 59, 9653-9658.	7.2	167
139	A Hydrogen Farm Strategy for Scalable Solar Hydrogen Production with Particulate Photocatalysts. Angewandte Chemie, 2020, 132, 9740-9745.	1.6	27
140	Exploration of the intrinsic factors limiting the photocurrent density in ferroelectric BiFeO ₃ thin film. Journal of Materials Chemistry A, 2020, 8, 6863-6873.	5.2	30
141	Unravelling the water oxidation mechanism on NaTaO ₃ -based photocatalysts. Journal of Materials Chemistry A, 2020, 8, 6812-6821.	5.2	23
142	Water Oxidation on TiO ₂ : A Comparative DFT Study of 1e ^{â€"} , 2e ^{â€"} , and 4e ^{â€"} Processes on Rutile, Anatase, and Brookite. Journal of Physical Chemistry C, 2020, 124, 8094-8100.	1.5	30
143	Constructing NiFe-LDH wrapped Cu2O nanocube heterostructure photocatalysts for enhanced photocatalytic dye degradation and CO2 reduction via Z-scheme mechanism. Journal of Alloys and Compounds, 2020, 831, 154723.	2.8	73
144	Laser-generated BiVO4 colloidal particles with tailoring size and native oxygen defect for highly efficient gas sensing. Journal of Hazardous Materials, 2020, 392, 122471.	6. 5	18

#	Article	IF	Citations
145	Understanding the Effect of Crystalline Structural Transformation for Leadâ€Free Inorganic Halide Perovskites. Advanced Materials, 2020, 32, e2002137.	11.1	101
146	Surface defect passivation of Ta3N5 photoanode via pyridine grafting for enhanced photoelectrochemical performance. Journal of Chemical Physics, 2020, 153, 024705.	1.2	5
147	Boosting Performance of Nonâ€Fullerene Organic Solar Cells by 2D gâ€C ₃ N ₄ Doped PEDOT:PSS. Advanced Functional Materials, 2020, 30, 1910205.	7.8	77
148	2D Conjugated Polyelectrolytes Possessing Identical Backbone with Active‣ayer Polymer as Cathode Interlayer for Organic Solar Cells. Macromolecular Rapid Communications, 2020, 41, 1900624.	2.0	3
149	Cobaltâ€Catalyzed Regio―and Stereoselective Hydroboration of Allenes. Angewandte Chemie, 2020, 132, 6337-6342.	1.6	9
150	Intrinsic Facetâ€Dependent Reactivity of Wellâ€Defined BiOBr Nanosheets on Photocatalytic Water Splitting. Angewandte Chemie - International Edition, 2020, 59, 6590-6595.	7.2	231
151	Hâ€Bondsâ€Assisted Molecular Order Manipulation of Nonfullerene Acceptors for Efficient Nonannealed Organic Solar Cells. Advanced Energy Materials, 2020, 10, 1903650.	10.2	31
152	Embedding Sulfur Atoms in Decahedron Bismuth Vanadate Crystals with a Soft Chemical Approach for Expanding the Light Absorption Range. ChemCatChem, 2020, 12, 1585-1590.	1.8	4
153	Intrinsic Facetâ€Dependent Reactivity of Wellâ€Defined BiOBr Nanosheets on Photocatalytic Water Splitting. Angewandte Chemie, 2020, 132, 6652-6657.	1.6	46
154	Pyroelectric effect in CdS nanorods decorated with a molecular Co-catalyst for hydrogen evolution. Nano Energy, 2020, 73, 104810.	8.2	138
155	Performance Enhancement of Ternary Polymer Solar Cells Induced by Tetrafluorotetracyanoquinodimethane Doping. Chemistry of Materials, 2019, 31, 7650-7656.	3.2	11
156	Simple Is Best: A <i>p</i> -Phenylene Bridging Methoxydiphenylamine-Substituted Carbazole Hole Transporter for High-Performance Perovskite Solar Cells. ACS Applied Materials & Samp; Interfaces, 2019, 11, 30065-30071.	4.0	44
157	Stereostructural Elucidation of Glucose Phosphorylation by Raman Optical Activity. Journal of Physical Chemistry B, 2019, 123, 7794-7800.	1.2	5
158	Photocatalytic Facet Selectivity in BiVO4 Nanoparticles: Polaron Electronic Structure and Thermodynamic Stability Considerations for Photocatalysis. Journal of Physical Chemistry C, 2019, 123, 20142-20151.	1.5	18
159	Water Oxidation Catalysts for Artificial Photosynthesis. Advanced Materials, 2019, 31, e1902069.	11.1	215
160	Development of a bismuth-based metal-organic framework for photocatalytic hydrogen production. Chinese Journal of Catalysis, 2019, 40, 1339-1344.	6.9	49
161	High-Performance M $<$ sub $>$ a $<$ /sub $>$ ZrO $<$ sub $><$ i $>×<$ /i $><$ /sub $>$ (M $<$ sub $>$ a $<$ /sub $>=$ Cd, Ga) Solid-Solution Catalysts for CO $<$ sub $>$ 2 $<$ /sub $>$ Hydrogenation to Methanol. ACS Catalysis, 2019, 9, 10253-10259.	5.5	137
162	Charge carrier transport dynamics in W/Mo-doped BiVO ₄ : first principles-based mesoscale characterization. Journal of Materials Chemistry A, 2019, 7, 3054-3065.	5.2	51

#	Article	IF	CITATIONS
163	Boosting photocatalytic water splitting by tuning built-in electric field at phase junction. Journal of Materials Chemistry A, 2019, 7, 10264-10272.	5.2	91
164	Recent developments in heterogeneous photocatalysts for solar-driven overall water splitting. Chemical Society Reviews, 2019, 48, 2109-2125.	18.7	1,639
165	Integrating a redox flow battery into a Z-scheme water splitting system for enhancing the solar energy conversion efficiency. Energy and Environmental Science, 2019, 12, 631-639.	15.6	44
166	Spatial separation of dual-cocatalysts on one-dimensional semiconductors for photocatalytic hydrogen production. Journal of Materials Chemistry A, 2019, 7, 15607-15614.	5.2	43
167	Artificial photosynthesis systems for catalytic water oxidation. Advances in Inorganic Chemistry, 2019, 74, 3-59.	0.4	35
168	Blocking backward reaction on hydrogen evolution cocatalyst in a photosystem II hybrid Z-scheme water splitting system. Chinese Journal of Catalysis, 2019, 40, 486-494.	6.9	18
169	Advances in solar energy conversion. Chemical Society Reviews, 2019, 48, 1862-1864.	18.7	492
170	Stable Potential Windows for Longâ€Term Electrocatalysis by Manganese Oxides Under Acidic Conditions. Angewandte Chemie, 2019, 131, 5108-5112.	1.6	44
171	Crystallographic-Orientation-Dependent Charge Separation of BiVO ₄ for Solar Water Oxidation. ACS Energy Letters, 2019, 4, 825-831.	8.8	126
172	Homophase Junction for Promoting Spatial Charge Separation in Photocatalytic Water Splitting. ACS Catalysis, 2019, 9, 3242-3252.	5.5	98
173	PTB7:PC ₆₁ BM Bulk Heterojunction-Based Photocathodes for Efficient Hydrogen Production in Aqueous Solution. Chemistry of Materials, 2019, 31, 1928-1935.	3.2	20
174	Stable Potential Windows for Longâ€Term Electrocatalysis by Manganese Oxides Under Acidic Conditions. Angewandte Chemie - International Edition, 2019, 58, 5054-5058.	7.2	182
175	Effect of Facetâ€Selective Assembly of Cocatalyst on BiVO ₄ Photoanode for Solar Water Oxidation. ChemCatChem, 2019, 11, 3763-3769.	1.8	34
176	Design of Pt/t-ZrO2/g-C3N4 efficient photocatalyst for the hydrogen evolution reaction. Applied Catalysis B: Environmental, 2019, 251, 305-312.	10.8	118
177	Efficient Plasmonic Au/CdSe Nanodumbbell for Photoelectrochemical Hydrogen Generation beyond Visible Region. Advanced Energy Materials, 2019, 9, 1803889.	10.2	85
178	Interfacial Charge Modulation: An Efficient Strategy for Boosting Spatial Charge Separation on Semiconductor Photocatalysts. Advanced Energy Materials, 2019, 9, 1803951.	10.2	125
179	An organic-base catalyzed asymmetric 1,4-addition of tritylthiol to <i>in situ</i> generated aza- <i>o</i> -quinone methides at the H ₂ O/DCM interface. Chemical Communications, 2019, 55, 2668-2671.	2.2	11
180	Simultaneous Photoelectrocatalytic Water Oxidation and Oxygen Reduction for Solar Electricity Production in Alkaline Solution. ChemSusChem, 2019, 12, 1026-1032.	3.6	34

#	Article	IF	CITATIONS
181	A polymeric ionic liquid as a cathode interlayer of organic photovoltaics with improved reproducibility. Chemical Communications, 2019, 55, 2956-2959.	2.2	5
182	Unusual Charge Distribution on the Facet of a SrTiO ₃ Nanocube under Light Irradiation. Journal of Physical Chemistry Letters, 2019, 10, 1212-1216.	2.1	17
183	Heterostructure of 1D Ta ₃ N ₅ Nanorod/BaTaO ₂ N Nanoparticle Fabricated by a Oneâ€5tep Ammonia Thermal Route for Remarkably Promoted Solar Hydrogen Production. Advanced Materials, 2019, 31, e1808185.	11.1	115
184	In-situ fabrication of atomic charge transferring path for constructing heterojunction photocatalysts with hierarchical structure. Applied Catalysis B: Environmental, 2019, 248, 459-465.	10.8	44
185	Sr- and Co-doped LaGaO _{3â^δ} with high O ₂ and H ₂ yields in solar thermochemical water splitting. Journal of Materials Chemistry A, 2019, 7, 6099-6112.	5.2	46
186	Water enables an asymmetric cross reaction of \hat{l} ±-keto acids with \hat{l} ±-keto esters for the synthesis of quaternary isotetronic acids. Chemical Communications, 2019, 55, 12813-12816.	2.2	8
187	Novel conjugated organic polymers as candidates for visible-light-driven photocatalytic hydrogen production. Applied Catalysis B: Environmental, 2019, 241, 461-470.	10.8	77
188	One-pot synthesis of BaMg1/3Ta2/3O3-xNy/Ta3N5 heterostructures as H2-evolving photocatalysts for construction of visible-light-driven Z-scheme overall water splitting. Applied Catalysis B: Environmental, 2019, 241, 1-7.	10.8	51
189	Development of Mixedâ€Anion Photocatalysts with Wide Visibleâ€Light Absorption Bands for Solar Water Splitting. ChemSusChem, 2019, 12, 1872-1888.	3.6	36
190	Giant Defect-Induced Effects on Nanoscale Charge Separation in Semiconductor Photocatalysts. Nano Letters, 2019, 19, 426-432.	4.5	63
191	A hydrated amorphous iron oxide nanoparticle as active water oxidation catalyst. Chinese Journal of Catalysis, 2019, 40, 38-42.	6.9	14
192	Highly Selective Conversion of Carbon Dioxide to Aromatics over Tandem Catalysts. Joule, 2019, 3, 570-583.	11.7	294
193	Promoting Photocatalytic H ₂ Evolution on Organic–Inorganic Hybrid Perovskite Nanocrystals by Simultaneous Dual-Charge Transportation Modulation. ACS Energy Letters, 2019, 4, 40-47.	8.8	127
194	Dynamic Interaction between Methylammonium Lead Iodide and TiO ₂ Nanocrystals Leads to Enhanced Photocatalytic H ₂ Evolution from HI Splitting. ACS Energy Letters, 2018, 3, 1159-1164.	8.8	147
195	Unique homo–heterojunction synergistic system consisting of stacked BiOCl nanoplate/Zn–Cr layered double hydroxide nanosheets promoting photocatalytic conversion of CO ₂ into solar fuels. Chemical Communications, 2018, 54, 5126-5129.	2.2	27
196	A Dispiroâ€Type Fluoreneâ€Indenofluoreneâ€Centered Hole Transporting Material for Efficient Planar Perovskite Solar Cells. Solar Rrl, 2018, 2, 1800048.	3.1	18
197	Metal phosphide catalysts anchored on metal-caged graphitic carbon towards efficient and durable hydrogen evolution electrocatalysis. Nano Energy, 2018, 48, 500-509.	8.2	66
198	Transitionâ€Metalâ€Based Electrocatalysts as Cocatalysts for Photoelectrochemical Water Splitting: A Mini Review. Small, 2018, 14, e1704179.	5.2	182

#	Article	IF	Citations
199	Achieving Simultaneous CO ₂ and H ₂ S Conversion via a Coupled Solarâ€Driven Electrochemical Approach on Nonâ€Preciousâ€Metal Catalysts. Angewandte Chemie - International Edition, 2018, 57, 3473-3477.	7.2	46
200	Bimodal hole transport in bulk BiVO ₄ from computation. Journal of Materials Chemistry A, 2018, 6, 3714-3723.	5.2	20
201	Mimicking the Key Functions of Photosystem II in Artificial Photosynthesis for Photoelectrocatalytic Water Splitting. Journal of the American Chemical Society, 2018, 140, 3250-3256.	6.6	224
202	Achieving Simultaneous CO ₂ and H ₂ S Conversion via a Coupled Solarâ€Driven Electrochemical Approach on Nonâ€Preciousâ€Metal Catalysts. Angewandte Chemie, 2018, 130, 3531-3535.	1.6	9
203	Using Pd as a Cocatalyst on GaN–ZnO Solid Solution for Visible-Light-Driven Overall Water Splitting. Catalysis Letters, 2018, 148, 933-939.	1.4	26
204	K ₂ SO ₄ -Assisted Hexagonal/Monoclinic WO ₃ Phase Junction for Efficient Photocatalytic Degradation of RhB. ACS Applied Energy Materials, 2018, 1, 2067-2077.	2.5	61
205	Hydrogen generation from formic acid decomposition on a highly efficient iridium catalyst bearing a diaminoglyoxime ligand. Green Chemistry, 2018, 20, 1835-1840.	4.6	67
206	Photoelectrochemical regeneration of all vanadium redox species for construction of a solar rechargeable flow cell. Journal of Energy Chemistry, 2018, 27, 278-282.	7.1	19
207	Inhibiting competing reactions of iodate/iodide redox mediators by surface modification of photocatalysts to enable Z-scheme overall water splitting. Applied Catalysis B: Environmental, 2018, 224, 579-585.	10.8	33
208	Fabrication of a Robust Tantalum Nitride Photoanode from a Flameâ€Heatingâ€Derived Compact Oxide Film. ChemPhotoChem, 2018, 2, 249-256.	1.5	5
209	Bismuth Tantalum Oxyhalogen: A Promising Candidate Photocatalyst for Solar Water Splitting. Advanced Energy Materials, 2018, 8, 1701392.	10.2	122
210	Chiral Catalysis at the Water/Oil Interface. ACS Catalysis, 2018, 8, 328-341.	5.5	44
211	Species, engineering and characterizations of defects in TiO 2 -based photocatalyst. Chinese Chemical Letters, 2018, 29, 671-680.	4.8	67
212	Probing the interaction of copper cofactor and azachalcone substrate with G-quadruplex of DNA based Diels-Alderase by site-specific fluorescence quenching titration. Biochimie, 2018, 146, 20-27.	1.3	12
213	Integration of Fe _x S electrocatalysts and simultaneously generated interfacial oxygen vacancies to synergistically boost photoelectrochemical water splitting of Fe ₂ O ₃ photoanodes. Chemical Communications, 2018, 54, 13817-13820.	2.2	19
214	Bandgap Engineering of Dual Acceptor-Containing Naphthalene Diimide Polymers for All-Polymer Solar Cells. ACS Sustainable Chemistry and Engineering, 2018, 6, 16005-16010.	3.2	16
215	Tandem one-pot CO ₂ reduction by PMHS and silyloxycarbonylation of aryl/vinyl halides to access carboxylic acids. Chemical Communications, 2018, 54, 11574-11577.	2.2	18
216	Role of Oxygen Vacancies on Oxygen Evolution Reaction Activity: \hat{l}^2 -Ga ₂ O ₃ as a Case Study. Chemistry of Materials, 2018, 30, 7714-7726.	3.2	43

#	Article	IF	CITATIONS
217	Redox-Based Visible-Light-Driven Z-Scheme Overall Water Splitting with Apparent Quantum Efficiency Exceeding 10%. Joule, 2018, 2, 2393-2402.	11.7	121
218	Surface Strategies for Particulate Photocatalysts toward Artificial Photosynthesis. Joule, 2018, 2, 2260-2288.	11.7	146
219	Znln2S4 flowerlike microspheres embedded with carbon quantum dots for efficient photocatalytic reduction of Cr(VI). Chinese Journal of Catalysis, 2018, 39, 1901-1909.	6.9	60
220	Visible-Light Driven Overall Conversion of CO ₂ and H ₂ O to CH ₄ and O ₂ on 3D-SiC@2D-MoS ₂ Heterostructure. Journal of the American Chemical Society, 2018, 140, 14595-14598.	6.6	361
221	Water oxidation on a mononuclear manganese heterogeneous catalyst. Nature Catalysis, 2018, 1, 870-877.	16.1	244
222	Development of Novel Perovskite‣ike Oxide Photocatalyst LiCuTa ₃ O ₉ with Dual Functions of Water Reduction and Oxidation under Visible Light Irradiation. Advanced Energy Materials, 2018, 8, 1801660.	10.2	38
223	Highly Active and Selective RuPd Bimetallic NPs for the Cleavage of the Diphenyl Ether C–O Bond. ACS Catalysis, 2018, 8, 11174-11183.	5.5	60
224	Visibleâ€Lightâ€Responsive 2D Cadmium–Organic Framework Single Crystals with Dual Functions of Water Reduction and Oxidation. Advanced Materials, 2018, 30, e1803401.	11.1	157
225	Roles of Phase Junction in Photocatalysis and Photoelectrocatalysis. Journal of Physical Chemistry C, 2018, 122, 21083-21096.	1.5	95
226	An Operando-Raman study on oxygen evolution of manganese oxides: Roles of phase composition and amorphization. Journal of Catalysis, 2018, 367, 53-61.	3.1	33
227	Bifunctional donor polymers bearing amino pendant groups for efficient cathode interlayer-free polymer solar cells. Journal of Materials Chemistry A, 2018, 6, 19828-19833.	5.2	4
228	Synthesis of Chiral Trispirocyclic Oxindoles via Organic-Base/Au(I)-Catalyzed Sequential Reactions. ACS Catalysis, 2018, 8, 10180-10189.	5.5	28
229	Amorphous Multi-elements Electrocatalysts with Tunable Bifunctionality toward Overall Water Splitting. ACS Catalysis, 2018, 8, 9926-9935.	5.5	121
230	Photo-induced self-formation of dual-cocatalysts on semiconductor surface. Chinese Journal of Catalysis, 2018, 39, 1730-1735.	6.9	8
231	Loop permutation affects the topology and stability of G-quadruplexes. Nucleic Acids Research, 2018, 46, 9264-9275.	6.5	62
232	A Twoâ€Stage Annealing Strategy for Crystallization Control of CH ₃ NH ₃ Pbl ₃ Films toward Highly Reproducible Perovskite Solar Cells. Small, 2018, 14, e1800181.	5.2	23
233	A Sandwichâ€Like Organolead Halide Perovskite Photocathode for Efficient and Durable Photoelectrochemical Hydrogen Evolution in Water. Advanced Energy Materials, 2018, 8, 1800795.	10.2	106
234	Charge separation via asymmetric illumination in photocatalytic Cu2O particles. Nature Energy, 2018, 3, 655-663.	19.8	275

#	Article	IF	Citations
235	Imaging photogenerated charge carriers on surfaces and interfaces of photocatalysts with surface photovoltage microscopy. Chemical Society Reviews, 2018, 47, 8238-8262.	18.7	343
236	Lowering Molecular Symmetry To Improve the Morphological Properties of the Holeâ€Transport Layer for Stable Perovskite Solar Cells. Angewandte Chemie, 2018, 130, 12709-12713.	1.6	18
237	Lowering Molecular Symmetry To Improve the Morphological Properties of the Holeâ€Transport Layer for Stable Perovskite Solar Cells. Angewandte Chemie - International Edition, 2018, 57, 12529-12533.	7.2	99
238	Fluorescence Spectroscopic Insight into the Supramolecular Interactions in DNAâ€Based Enantioselective Sulfoxidation. ChemBioChem, 2018, 19, 2233-2240.	1.3	5
239	Investigating the Coke Formation Mechanism of H-ZSM-5 during Methanol Dehydration Using Operando UV–Raman Spectroscopy. ACS Catalysis, 2018, 8, 9207-9215.	5.5	64
240	Improving Catalytic Hydrogenation Performance of Pd Nanoparticles by Electronic Modulation Using Phosphine Ligands. ACS Catalysis, 2018, 8, 6476-6485.	5.5	148
241	Effects of Au nanoparticle size and metal-support interaction on plasmon-induced photocatalytic water oxidation. Chinese Journal of Catalysis, 2018, 39, 1219-1227.	6.9	51
242	Photoelectrocatalytic Materials for Solar Water Splitting. Advanced Energy Materials, 2018, 8, 1800210.	10.2	364
243	A novel synthetic strategy of Fe-ZSM-35 with pure framework Fe species and its formation mechanism. Inorganic Chemistry Frontiers, 2018, 5, 2031-2037.	3.0	9
244	Spatial distribution of active sites on a ferroelectric PbTiO ₃ photocatalyst for photocatalytic hydrogen production. Faraday Discussions, 2017, 198, 463-472.	1.6	30
245	Crucial Roles of Electron–Proton Transport Relay in the Photosystem II-Photocatalytic Hybrid System for Overall Water Splitting. Journal of Physical Chemistry C, 2017, 121, 2605-2612.	1.5	15
246	Asymmetric Catalytic 1,2-Hydroperoxidation of Isatin-Derived Ketimine with Hydrogen Peroxide in the Crowding Environment of PEGs. Organic Letters, 2017, 19, 1044-1047.	2.4	34
247	Enhancement effects of dopants and SiO2 support on mixed metal ferrites based two-step thermochemical water splitting. Solar Energy, 2017, 144, 643-659.	2.9	24
248	Enantioselective Reactions of 2-Sulfonylalkyl Phenols with Allenic Esters: Dynamic Kinetic Resolution and [4+2] Cycloaddition Involving ortho-Quinone Methide Intermediates. Angewandte Chemie, 2017, 129, 3743-3747.	1.6	25
249	Enantioselective Reactions of 2â€Sulfonylalkyl Phenols with Allenic Esters: Dynamic Kinetic Resolution and [4+2] Cycloaddition Involving <i>ortho</i> òli>â€Quinone Methide Intermediates. Angewandte Chemie - International Edition, 2017, 56, 3689-3693.	7. 2	100
250	Solventâ€Free Synthesis of <scp>ITQ</scp> â€12, <scp>ITQ</scp> â€13, and <scp>ITQ</scp> â€17 Zeolites. Chin Journal of Chemistry, 2017, 35, 572-576.	ese 2.6	15
251	Significance of Crystal Morphology Controlling in Semiconductor-Based Photocatalysis: A Case Study on BiVO ₄ Photocatalyst. Crystal Growth and Design, 2017, 17, 2923-2928.	1.4	156
252	Accelerated catalytic activity of Pd NPs supported on amine-rich silica hollow nanospheres for quinoline hydrogenation. Catalysis Science and Technology, 2017, 7, 2221-2227.	2.1	81

#	Article	IF	Citations
253	Influence of the Electrostatic Interaction between a Molecular Catalyst and Semiconductor on Photocatalytic Hydrogen Evolution Activity in Cobaloxime/CdS Hybrid Systems. ACS Applied Materials & Amp; Interfaces, 2017, 9, 23230-23237.	4.0	31
254	Amorphous Cobalt Oxide Nanoparticles as Active Waterâ€Oxidation Catalysts. ChemCatChem, 2017, 9, 3641-3645.	1.8	34
255	Synthesis of BaTaO ₂ N oxynitride from Ba-rich oxide precursor for construction of visible-light-driven Z-scheme overall water splitting. Dalton Transactions, 2017, 46, 10707-10713.	1.6	45
256	Relations between the loop transposition of DNA G-quadruplex and the catalytic function of DNAzyme. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 1913-1920.	1.1	14
257	Aminosilane as a Molecular Linker between the Electron-Transport Layer and Active Layer for Efficient Inverted Polymer Solar Cells. ACS Applied Materials & Samp; Interfaces, 2017, 9, 13390-13395.	4.0	28
258	Directly Probing Charge Separation at Interface of TiO ₂ Phase Junction. Journal of Physical Chemistry Letters, 2017, 8, 1419-1423.	2.1	180
259	Easily accessible conjugated pyrene sulfonates as cathode interfacial materials for polymer solar cells. Journal of Materials Chemistry A, 2017, 5, 657-662.	5.2	9
260	Photoelectrocatalytic Water Splitting: Significance of Cocatalysts, Electrolyte, and Interfaces. ACS Catalysis, 2017, 7, 675-688.	5.5	488
261	lonic liquids with variable cations as cathode interlayer for conventional polymer solar cells. Organic Electronics, 2017, 42, 387-392.	1.4	18
262	Biomimetic electron transport via multiredox shuttles from photosystem II to a photoelectrochemical cell for solar water splitting. Energy and Environmental Science, 2017, 10, 765-771.	15.6	68
263	Direct thermolysis of CO ₂ into CO and O ₂ . Chemical Communications, 2017, 53, 1188-1191.	2.2	32
264	Visualizing the Nano Cocatalyst Aligned Electric Fields on Single Photocatalyst Particles. Nano Letters, 2017, 17, 6735-6741.	4.5	164
265	A highly selective and stable ZnO-ZrO ₂ solid solution catalyst for CO ₂ hydrogenation to methanol. Science Advances, 2017, 3, e1701290.	4.7	683
266	Promoting Charge Separation and Injection by Optimizing the Interfaces of GaN:ZnO Photoanode for Efficient Solar Water Oxidation. ACS Applied Materials & Samp; Interfaces, 2017, 9, 30696-30702.	4.0	34
267	Achieving overall water splitting on plasmon-based solid Z-scheme photocatalysts free of redox mediators. Journal of Catalysis, 2017, 354, 250-257.	3.1	48
268	Cooperative Activation of Cobalt–Salen Complexes for Epoxide Hydration Promoted on Flexible Porous Organic Frameworks. Chemistry - A European Journal, 2017, 23, 11504-11508.	1.7	24
269	Positioning the Water Oxidation Reaction Sites in Plasmonic Photocatalysts. Journal of the American Chemical Society, 2017, 139, 11771-11778.	6.6	311
270	Synthesis and Demonstration of Subnanometric Iridium Oxide as Highly Efficient and Robust Water Oxidation Catalyst. ACS Catalysis, 2017, 7, 5983-5986.	5.5	100

#	Article	IF	CITATIONS
271	A wide visible light driven complex perovskite Ba(Mg _{1/3} Ta _{2/3})O _{3â^'x} N _y photocatalyst for water oxidation and reduction. Journal of Materials Chemistry A, 2017, 5, 18870-18877.	5.2	20
272	Highly Selective Conversion of Carbon Dioxide to Lower Olefins. ACS Catalysis, 2017, 7, 8544-8548.	5 . 5	387
273	Interfacial charge transfer in semiconductor-molecular photocatalyst systems for proton reduction. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2017, 33, 165-179.	5.6	35
274	CoO _x nanoparticle anchored on sulfonated-graphite as efficient water oxidation catalyst. Chemical Science, 2017, 8, 6111-6116.	3.7	59
275	Unravelling charge separation via surface built-in electric fields within single particulate photocatalysts. Faraday Discussions, 2017, 198, 473-479.	1.6	45
276	Design and Fabrication of a Dualâ€Photoelectrode Fuel Cell towards Costâ€Effective Electricity Production from Biomass. ChemSusChem, 2017, 10, 99-105.	3.6	51
277	Achievement of visible-light-driven Z-scheme overall water splitting using barium-modified Ta ₃ N ₅ as a H ₂ -evolving photocatalyst. Chemical Science, 2017, 8, 437-443.	3.7	110
278	A Short-Wavelength Raman Optical Activity Spectrometer with Laser Source at 457 nm for the Characterization of Chiral Molecules. Applied Spectroscopy, 2017, 71, 2211-2217.	1.2	12
279	Photocatalytic Water Splitting on Semiconductor-Based Photocatalysts. Advances in Catalysis, 2017, 60, 1-57.	0.1	72
280	Iodideâ€Promoted Dehydrogenation of Formic Acid on a Rhodium Complex. European Journal of Inorganic Chemistry, 2016, 2016, 490-496.	1.0	22
281	Time-resolved photoluminescence of anatase/rutile TiO2 phase junction revealing charge separation dynamics. Chinese Journal of Catalysis, 2016, 37, 2059-2068.	6.9	55
282	Highly active water oxidation on nanostructured biomimetic calcium manganese oxide catalysts. Journal of Materials Chemistry A, 2016, 4, 6585-6594.	5.2	27
283	Dual Extraction of Photogenerated Electrons and Holes from a Ferroelectric Sr _{0.5} Ba _{0.5} Nb ₂ O ₆ Semiconductor. ACS Applied Materials & Samp; Interfaces, 2016, 8, 13857-13864.	4.0	16
284	Base-free hydrogenation of CO ₂ to formic acid in water with an iridium complex bearing a N,N′-diimine ligand. Green Chemistry, 2016, 18, 4553-4558.	4.6	105
285	Magnesia interface nanolayer modification of Pt/Ta3N5 for promoted photocatalytic hydrogen production under visible light irradiation. Journal of Catalysis, 2016, 339, 77-83.	3.1	62
286	Ultrathin two-dimensional graphitic carbon nitride as a solution-processed cathode interfacial layer for inverted polymer solar cells. Journal of Materials Chemistry A, 2016, 4, 8000-8004.	5.2	68
287	A tetragonal tungsten bronze-type photocatalyst: Ferro-paraelectric phase transition and photocatalysis. Chinese Journal of Catalysis, 2016, 37, 1257-1262.	6.9	22
288	Decorating mesoporous silicon with amorphous metal–phosphorous-derived nanocatalysts towards enhanced photoelectrochemical water reduction. Journal of Materials Chemistry A, 2016, 4, 14960-14967.	5.2	16

#	Article	IF	Citations
289	Achieving 10.5% efficiency for inverted polymer solar cells by modifying the ZnO cathode interlayer with phenols. Journal of Materials Chemistry A, 2016, 4, 16824-16829.	5.2	39
290	Manipulating the Interfacial Energetics of n-type Silicon Photoanode for Efficient Water Oxidation. Journal of the American Chemical Society, 2016, 138, 13664-13672.	6.6	121
291	Construction and Nanoscale Detection of Interfacial Charge Transfer of Elegant Z-Scheme WO ₃ /Au/In ₂ S ₃ Nanowire Arrays. Nano Letters, 2016, 16, 5547-5552.	4.5	217
292	Integrating Perovskite Photovoltaics and Noble-Metal-Free Catalysts toward Efficient Solar Energy Conversion and H ₂ S Splitting. ACS Catalysis, 2016, 6, 6198-6206.	5.5	40
293	In Situ Electrodeposited Indium Nanocrystals for Efficient CO ₂ Reduction to CO with Low Overpotential. ACS Catalysis, 2016, 6, 6438-6443.	5.5	64
294	Bridging surface states and current–potential response over hematite-based photoelectrochemical water oxidation. RSC Advances, 2016, 6, 85582-85586.	1.7	39
295	CuFeS ₂ colloidal nanocrystals as an efficient electrocatalyst for dye sensitized solar cells. Chemical Communications, 2016, 52, 11488-11491.	2.2	45
296	Surface optimization to eliminate hysteresis for record efficiency planar perovskite solar cells. Energy and Environmental Science, 2016, 9, 3071-3078.	15.6	870
297	Unraveling a Single-Step Simultaneous Two-Electron Transfer Process from Semiconductor to Molecular Catalyst in a CoPy/CdS Hybrid System for Photocatalytic H ₂ Evolution under Strong Alkaline Conditions. Journal of the American Chemical Society, 2016, 138, 10726-10729.	6.6	79
298	Highly stabilized perovskite solar cell prepared using vacuum deposition. RSC Advances, 2016, 6, 93525-93531.	1.7	10
299	Nanostructured hybrid NiFeOOH/CNT electrocatalysts for oxygen evolution reaction with low overpotential. RSC Advances, 2016, 6, 74536-74544.	1.7	28
300	Spatially Separated Photosystem II and a Silicon Photoelectrochemical Cell for Overall Water Splitting: A Naturalâ€"Artificial Photosynthetic Hybrid. Angewandte Chemie - International Edition, 2016, 55, 9229-9233.	7.2	49
301	Moistureâ€Assisted Preparation of Compact GaN:ZnO Photoanode Toward Efficient Photoelectrochemical Water Oxidation. Advanced Energy Materials, 2016, 6, 1600864.	10.2	54
302	Enantiomeric Catalytic Formal Thiolation of 2,5â€Dimethylâ€3â€[1â€(arylsulfonyl)alkyl]pyrroles in an Oil/Water Biphasic System. European Journal of Organic Chemistry, 2016, 2016, 5826-5830.	1.2	5
303	K ₈ Nb ₇ P ₇ O ₃₉ : a new type of complicated incommensurately modulated structure and photoluminescence properties of Eu ³⁺ -doped solid solutions. Journal of Materials Chemistry C, 2016, 4, 11436-11448.	2.7	14
304	Photoassisted Oxygen Reduction Reaction in H ₂ –O ₂ Fuel Cells. Angewandte Chemie - International Edition, 2016, 55, 14748-14751.	7.2	81
305	Integrating a dual-silicon photoelectrochemical cell into a redox flow battery for unassisted photocharging. Nature Communications, 2016, 7, 11474.	5.8	120
306	Hysteresisâ€Suppressed Highâ€Efficiency Flexible Perovskite Solar Cells Using Solidâ€State Ionicâ€Liquids for Effective Electron Transport. Advanced Materials, 2016, 28, 5206-5213.	11,1	387

#	Article	IF	Citations
307	Deep UV resonance Raman spectroscopic study on electronâ€phonon coupling in hexagonal Illâ€nitride wide bandgap semiconductors. Journal of Raman Spectroscopy, 2016, 47, 884-887.	1.2	8
308	Mo ₂ C as Nonâ€Noble Metal Co atalyst in Mo ₂ C/CdS Composite for Enhanced Photocatalytic H ₂ Evolution under Visible Light Irradiation. ChemSusChem, 2016, 9, 820-824.	3.6	123
309	Enantioselective sulfoxidation reaction catalyzed by a G-quadruplex DNA metalloenzyme. Chemical Communications, 2016, 52, 9644-9647.	2.2	48
310	Enhancing charge separation on high symmetry SrTiO ₃ exposed with anisotropic facets for photocatalytic water splitting. Energy and Environmental Science, 2016, 9, 2463-2469.	15.6	372
311	Roles of adsorption sites in electron transfer from CdS quantum dots to molecular catalyst cobaloxime studied by time-resolved spectroscopy. Physical Chemistry Chemical Physics, 2016, 18, 17389-17397.	1.3	16
312	Efficient and stable polymer solar cells with electrochemical deposition of CuSCN as an anode interlayer. RSC Advances, 2016, 6, 56845-56850.	1.7	8
313	Understanding the anatase–rutile phase junction in charge separation and transfer in a TiO ₂ electrode for photoelectrochemical water splitting. Chemical Science, 2016, 7, 6076-6082.	3.7	138
314	Enhancing the catalytic activity of Ru NPs deposited with carbon species in yolk–shell nanostructures. Journal of Materials Chemistry A, 2016, 4, 10956-10963.	5.2	26
315	Solarâ€toâ€Hydrogen Efficiency of 9.5 % by using a Thinâ€Layer Platinum Catalyst and Commercial Amorphous Silicon Solar Cells. ChemCatChem, 2016, 8, 1713-1717.	1.8	7
316	Where Do Photogenerated Holes Go in Anatase:Rutile TiO ₂ ? A Transient Absorption Spectroscopy Study of Charge Transfer and Lifetime. Journal of Physical Chemistry A, 2016, 120, 715-723.	1.1	128
317	Enabling an integrated tantalum nitride photoanode to approach the theoretical photocurrent limit for solar water splitting. Energy and Environmental Science, 2016, 9, 1327-1334.	15.6	332
318	Insight into the charge transfer in particulate Ta ₃ N ₅ photoanode with high photoelectrochemical performance. Chemical Science, 2016, 7, 4391-4399.	3.7	64
319	An artificial photosynthetic system containing an inorganic semiconductor and a molecular catalyst for photocatalytic water oxidation. Journal of Catalysis, 2016, 338, 168-173.	3.1	66
320	Band Structure Engineering: Insights from Defects, Band Gap, and Electron Mobility, from Study of Magnesium Tantalate. Journal of Physical Chemistry C, 2016, 120, 6930-6937.	1.5	26
321	Sub-2 nm cobalt oxide cluster catalyst supported on alumina for efficient water oxidation. Applied Catalysis A: General, 2016, 521, 154-159.	2.2	5
322	The dependence of photocatalytic activity on the selective and nonselective deposition of noble metal cocatalysts on the facets of rutile TiO2. Journal of Catalysis, 2016, 337, 36-44.	3.1	78
323	The enantioselective construction of chiral spirooxindole-based 4-thiazolidinone via asymmetric catalytic formal [3+2] annulation using a bifunctional catalyst. Chemical Communications, 2016, 52, 3418-3421.	2.2	42
324	Effect of Redox Cocatalysts Location on Photocatalytic Overall Water Splitting over Cubic NaTaO ₃ Semiconductor Crystals Exposed with Equivalent Facets. ACS Catalysis, 2016, 6, 2182-2191.	5. 5	149

#	Article	IF	CITATIONS
325	Substrate–Electrode Interface Engineering by an Electron-Transport Layer in Hematite Photoanode. ACS Applied Materials & District School Sc	4.0	30
326	Fabrication of a monoclinic/hexagonal junction in WO3 and its enhanced photocatalytic degradation of rhodamine B. Chinese Journal of Catalysis, 2016, 37, 349-358.	6.9	61
327	Reevaluation of the stability of G-quadruplex structures under crowding conditions. Biochimie, 2016, 121, 204-208.	1.3	30
328	Catalytic Function of IrO _{<i>x</i>} in the Two-Step Thermochemical CO ₂ -Splitting Reaction at High Temperatures. ACS Catalysis, 2016, 6, 1172-1180.	5. 5	40
329	A highly enantioselective thiolation of sulfonyl indoles to access 3-sec-sulfur-substituted indoles in water. Chemical Communications, 2016, 52, 96-99.	2.2	21
330	Photoassisted Oxygen Reduction Reaction in H ₂ â€"O ₂ Fuel Cells. Angewandte Chemie, 2016, 128, 14968-14971.	1.6	25
331	Construction and Nanoscale Detection of Interfacial Charge Transfer of Elegant Z-Scheme WO/Au/InS Nanowire Arrays. Nano Letters, 2016, , .	4.5	O
332	Photo-induced H2 production from a CH3OH-H2O solution at insulator surface. Scientific Reports, 2015, 5, 13475.	1.6	19
333	Unprecedentedly High Formic Acid Dehydrogenation Activity on an Iridium Complex with an ⟨i⟩N⟨ i⟩,⟨i⟩N⟨ i⟩′â€Diimine Ligand in Water. Chemistry - A European Journal, 2015, 21, 12592-12595.	1.7	124
334	Efficient Visibleâ€Lightâ€Driven Zâ€Scheme Overall Water Splitting Using a MgTa ₂ O _{6â°°<i>x</i>} N _{<i>y</i>} â€%/TaON Heterostructure Photocatalyst for H ₂ Evolution. Angewandte Chemie - International Edition, 2015, 54, 8498-8501.	7.2	252
335	Efficient Hole Extraction from a Holeâ€Storageâ€Layerâ€Stabilized Tantalum Nitride Photoanode for Solar Water Splitting. Chemistry - A European Journal, 2015, 21, 9624-9628.	1.7	66
336	Conversion of Biomass Derivatives to Electricity in Photo Fuel Cells using Undoped and Tungstenâ€doped Bismuth Vanadate Photoanodes. ChemSusChem, 2015, 8, 4049-4055.	3.6	41
337	Monodisperse AgSbS ₂ Nanocrystals: Sizeâ€Control Strategy, Largeâ€Scale Synthesis, and Photoelectrochemistry. Chemistry - A European Journal, 2015, 21, 11143-11151.	1.7	31
338	Synergetic Effect of Dual Coâ€catalysts on the Activity of <i>p</i> à€Type Cu ₂ O Crystals with Anisotropic Facets. Chemistry - A European Journal, 2015, 21, 14337-14341.	1.7	77
339	Enhancing the Performance of Amorphousâ€Silicon Photoanodes for Photoelectrocatalytic Water Oxidation. ChemSusChem, 2015, 8, 3987-3991.	3.6	17
340	Direct Imaging of Highly Anisotropic Photogenerated Charge Separations on Different Facets of a Single BiVO ₄ Photocatalyst. Angewandte Chemie - International Edition, 2015, 54, 9111-9114.	7.2	284
341	Theoretical insight into the roles of cocatalysts in the Ni–NiO/β-Ga ₂ O ₃ photocatalyst for overall water splitting. Journal of Materials Chemistry A, 2015, 3, 10309-10319.	5.2	26
342	Efficiency improved for inverted polymer solar cells with electrostatically self-assembled BenMelm-Cl ionic liquid layer as cathode interface layer. Nano Energy, 2015, 13, 275-282.	8.2	74

#	Article	IF	CITATIONS
343	Photovoltaic device based on TiO2 rutile/anatase phase junctions fabricated in coaxial nanorod arrays. Nano Energy, 2015, 15, 406-412.	8.2	54
344	Well-defined BiOCl colloidal ultrathin nanosheets: synthesis, characterization, and application in photocatalytic aerobic oxidation of secondary amines. Chemical Science, 2015, 6, 1873-1878.	3.7	196
345	Formal Asymmetric Catalytic Thiolation with a Bifunctional Catalyst at a Water–Oil Interface: Synthesis of Benzyl Thiols. Angewandte Chemie - International Edition, 2015, 54, 4522-4526.	7.2	115
346	UV Raman Spectroscopic Characterization of Catalysts and Catalytic Active Sites. Catalysis Letters, 2015, 145, 468-481.	1.4	40
347	Hydrodesulfurization of 4,6-DMDBT on multi-metallic bulk catalyst NiAlZnMoW: Effect of Zn. Applied Catalysis A: General, 2015, 504, 319-327.	2.2	15
348	Photoelectrochemical Water Splitting Promoted with a Disordered Surface Layer Created by Electrochemical Reduction. ACS Applied Materials & Samp; Interfaces, 2015, 7, 3791-3796.	4.0	75
349	Abnormal Effects of Cations (Li ⁺ , Na ⁺ , and K ⁺) on Photoelectrochemical and Electrocatalytic Water Splitting. Journal of Physical Chemistry B, 2015, 119, 3560-3566.	1.2	31
350	Asymmetric hydrogenation in nanoreactors with encapsulated Rh-MonoPhos catalyst. Green Chemistry, 2015, 17, 1702-1709.	4.6	15
351	Interface Engineering of a CoO _{<i>x</i>} /Ta ₃ N ₅ Photocatalyst for Unprecedented Water Oxidation Performance under Visibleâ€Lightâ€Irradiation. Angewandte Chemie, 2015, 127, 3090-3094.	1.6	48
352	Interface Engineering of a CoO _{<i>x</i>} /Ta ₃ N ₅ Photocatalyst for Unprecedented Water Oxidation Performance under Visibleâ€Lightâ€Irradiation. Angewandte Chemie - International Edition, 2015, 54, 3047-3051.	7.2	254
353	Cu ₂ O/CuO photocathode with improved stability for photoelectrochemical water reduction. RSC Advances, 2015, 5, 10790-10794.	1.7	94
354	Higherâ€Order Human Telomeric Gâ€Quadruplex DNA Metalloenzymes Enhance Enantioselectivity in the Diels–Alder Reaction. ChemBioChem, 2015, 16, 618-624.	1.3	22
355	Effect of Phase Junction Structure on the Photocatalytic Performance in Overall Water Splitting: Ga ₂ O ₃ Photocatalyst as an Example. Journal of Physical Chemistry C, 2015, 119, 18221-18228.	1.5	101
356	Terpyridine–Cu(<scp>ii</scp>) targeting human telomeric DNA to produce highly stereospecific G-quadruplex DNA metalloenzyme. Chemical Science, 2015, 6, 5578-5585.	3.7	47
357	Shape and composition control of Bi ₁₉ S ₂₇ (Br _{3â^'x} ,I _x) alloyed nanowires: the role of metal ions. Chemical Science, 2015, 6, 4615-4622.	3.7	24
358	Higher-order human telomeric G-quadruplex DNA metalloenzyme catalyzed Diels–Alder reaction: an unexpected inversion of enantioselectivity modulated by K ⁺ and NH ₄ ⁺ ions. Chemical Communications, 2015, 51, 13174-13177.	2.2	23
359	Achieving overall water splitting using titanium dioxide-based photocatalysts of different phases. Energy and Environmental Science, 2015, 8, 2377-2382.	15.6	313
360	Two-step thermochemical cycles for CO2 splitting on Zr-doped cobalt ferrite supported on silica. Solar Energy, 2015, 116, 133-143.	2.9	30

#	Article	lF	Citations
361	Fabrication of ZnO with tunable morphology through a facile treatment of Zn-based coordination polymers. Science China Chemistry, 2015, 58, 411-416.	4.2	7
362	A new Pb(<scp>iv</scp>)-based photocathode material Sr ₂ PbO ₄ with good light harvesting ability. Journal of Materials Chemistry A, 2015, 3, 12051-12058.	5.2	5
363	Efficiency enhancement of P3HT:PCBM polymer solar cells using oligomers DH4T as the third component. Science China Chemistry, 2015, 58, 1169-1175.	4.2	5
364	Alternating precursor layer deposition for highly stable perovskite films towards efficient solar cells using vacuum deposition. Journal of Materials Chemistry A, 2015, 3, 9401-9405.	5.2	146
365	Conjugated microporous polymers with chiral BINAP ligand built-in as efficient catalysts for asymmetric hydrogenation. Catalysis Science and Technology, 2015, 5, 2585-2589.	2.1	40
366	Controllable synthesis of silicon nano-particles using a one-step PECVD-ionic liquid strategy. Journal of Materials Chemistry A, 2015, 3, 10233-10237.	5.2	0
367	Direct electron transfer from photosystem II to hematite in a hybrid photoelectrochemical cell. Chemical Communications, 2015, 51, 16952-16955.	2.2	33
368	High efficiency flexible perovskite solar cells using superior low temperature TiO ₂ . Energy and Environmental Science, 2015, 8, 3208-3214.	15.6	519
369	Synergetic Effect of Conjugated Ni(OH) ₂ /IrO ₂ Cocatalyst on Titanium-Doped Hematite Photoanode for Solar Water Splitting. Journal of Physical Chemistry C, 2015, 119, 19607-19612.	1.5	167
370	Fabrication of Efficient Hydrogenation Nanoreactors by Modifying the Freedom of Ultrasmall Platinum Nanoparticles within Yolk–Shell Nanospheres. Chemistry - A European Journal, 2015, 21, 10490-10496.	1.7	15
371	Enhancing photoresponsivity of self-powered UV photodetectors based on electrochemically reduced TiO ₂ nanorods. RSC Advances, 2015, 5, 95939-95942.	1.7	7
372	A remarkable difference in CO ₂ hydrogenation to methanol on Pd nanoparticles supported inside and outside of carbon nanotubes. Chemical Communications, 2015, 51, 17615-17618.	2.2	62
373	The nature of photogenerated charge separation among different crystal facets of BiVO ₄ studied by density functional theory. Physical Chemistry Chemical Physics, 2015, 17, 23503-23510.	1.3	112
374	Charge separation promoted by phase junctions in photocatalysts. Chinese Journal of Catalysis, 2015, 36, 1519-1527.	6.9	40
375	Relation between the Photocatalytic and Photoelectrocatalytic Performance for the Particulate Semiconductor-Based Photoconversion Systems with Surface Phase Junction Structure. Journal of Physical Chemistry C, 2015, 119, 22460-22464.	1.5	28
376	Three dimensional palladium nanoflowers with enhanced electrocatalytic activity towards the anodic oxidation of formic acid. Journal of Materials Chemistry A, 2015, 3, 973-977.	5.2	16
377	Zinc–cobalt oxides as efficient water oxidation catalysts: the promotion effect of ZnO. Journal of Materials Chemistry A, 2015, 3, 4010-4017.	5.2	58
378	An acid-free medium growth of rutile TiO ₂ nanorods arrays and their application in perovskite solar cells. Journal of Materials Chemistry C, 2015, 3, 729-733.	2.7	50

#	Article	IF	CITATIONS
379	Oxidation of refractory sulfur-containing compounds with molecular oxygen catalyzed by vanadoperiodate. Green Chemistry, 2015, 17, 817-820.	4.6	54
380	Asymmetric hydrogenation by RuCl ₂ (R-Binap)(dmf) _n encapsulated in silica-based nanoreactors. Catalysis Science and Technology, 2015, 5, 666-672.	2.1	16
381	Synthesis of oriented TiO2 nanocones with fast charge transfer for perovskite solar cells. Nano Energy, 2015, 11, 409-418.	8.2	180
382	Note: Deep ultraviolet Raman spectrograph with the laser excitation line down to 177.3 nm and its application. Review of Scientific Instruments, 2014, 85, 046105.	0.6	10
383	Highly Enantioselective Reactions of Cyclohexanone and <i>β</i> , <i>γ</i> , <i>γ</i> êUnsaturated <i>α</i> â€Keto Ester: The Tuning of Chemoâ€selectivities by Secondary and Primary Amine Catalysts. Chinese Journal of Chemistry, 2014, 32, 985-990.	2.6	9
384	A facile two-step method for fabrication of plate-like WO ₃ photoanode under mild conditions. Faraday Discussions, 2014, 176, 185-197.	1.6	23
385	Facile Synthesis of Chiral Spirooxindoleâ€Based Isotetronic Acids and 5â€1 <i>H</i> àê€Pyrrolâ€2â€ones through Cascade Reactions with Bifunctional Organocatalysts. Chemistry - A European Journal, 2014, 20, 8545-8550.	1.7	42
386	Charge-Sensitive Surface Optical Phonon in CdS Quantum Dots Studied by Resonant Raman Spectroscopy. Journal of Physical Chemistry C, 2014, 118, 30269-30273.	1.5	21
387	An Integrated Photoelectrochemical–Chemical Loop for Solarâ€Driven Overall Splitting of Hydrogen Sulfide. Angewandte Chemie - International Edition, 2014, 53, 4399-4403.	7.2	79
388	Photoelectrochemical water oxidation on photoanodes fabricated with hexagonal nanoflower and nanoblock WO3. Nanoscale, 2014, 6, 2061.	2.8	84
389	A new multi–metallic bulk catalyst with high hydrodesulfurization activity of 4,6–DMDBT prepared using layered hydroxide salts as structural templates. Applied Catalysis A: General, 2014, 474, 69-77.	2.2	37
390	DFT Simulations of Water Adsorption and Activation on Lowâ€Index αâ€Ga ₂ O ₃ Surfaces. Chemistry - A European Journal, 2014, 20, 6915-6926.	1.7	32
391	Workâ€Functionâ€Tunable Chlorinated Graphene Oxide as an Anode Interface Layer in Highâ€Efficiency Polymer Solar Cells. Advanced Energy Materials, 2014, 4, 1400591.	10.2	85
392	Thermochemical CO2 splitting reaction with CexM1â^'xO2â^'Î^ (M=Ti4+, Sn4+, Hf4+, Zr4+, La3+, Y3+ and) Tj ETQo	10 <u>9</u> 0 rgB	Г Дverlock
393	Podlike Nâ€Doped Carbon Nanotubes Encapsulating FeNi Alloy Nanoparticles: Highâ€Performance Counter Electrode Materials for Dyeâ€Sensitized Solar Cells. Angewandte Chemie - International Edition, 2014, 53, 7023-7027.	7.2	315
394	Highly efficient photocatalysts constructed by rational assembly of dual-cocatalysts separately on different facets of BiVO ₄ . Energy and Environmental Science, 2014, 7, 1369-1376.	15.6	491
395	A non-fullerene acceptor with all "A―units realizing high open-circuit voltage solution-processed organic photovoltaics. Journal of Materials Chemistry A, 2014, 2, 2657.	5.2	21
396	Synergetic effect of dual cocatalysts in photocatalytic H ₂ production on Pd–IrO _x /TiO ₂ : a new insight into dual cocatalyst location. Physical Chemistry Chemical Physics, 2014, 16, 17734.	1.3	51

#	Article	IF	Citations
397	Transition metal (Ni, Fe, and Cu) hydroxides enhanced l±-Fe ₂ O ₃ photoanode-based photofuel cell. RSC Advances, 2014, 4, 47383-47388.	1.7	19
398	$Cl < sup > \hat{a}^* < / sup > making overall water splitting possible on TiO < sub > 2 < / sub > -based photocatalysts. Catalysis Science and Technology, 2014, 4, 2913.$	2.1	42
399	Selective production of hydrogen peroxide and oxidation of hydrogen sulfide in an unbiased solar photoelectrochemical cell. Energy and Environmental Science, 2014, 7, 3347-3351.	15.6	57
400	Solar-to-hydrogen efficiency exceeding 2.5% achieved for overall water splitting with an all earth-abundant dual-photoelectrode. Physical Chemistry Chemical Physics, 2014, 16, 15608-15614.	1.3	94
401	Enhanced lithium storage capacity of Co ₃ O ₄ hexagonal nanorings derived from Co-based metal organic frameworks. Journal of Materials Chemistry A, 2014, 2, 17408-17414.	5.2	72
402	Modification of supported Pd catalysts by alkalic salts in the selective racemization and dynamic kinetic resolution of primary amines. Catalysis Science and Technology, 2014, 4, 464-471.	2.1	24
403	Fabrication of core–shell structured mesoporous silica nanospheres with dually oriented mesochannels through pore engineering. Journal of Materials Chemistry A, 2014, 2, 8118-8125.	5.2	30
404	Tuning the energy band-gap of crystalline gallium oxide to enhance photocatalytic water splitting: mixed-phase junctions. Journal of Materials Chemistry A, 2014, 2, 17005-17014.	5.2	84
405	A hematite photoanode with gradient structure shows an unprecedentedly low onset potential for photoelectrochemical water oxidation. Physical Chemistry Chemical Physics, 2014, 16, 23544-23548.	1.3	41
406	An amphiphilic organic catalyst for the direct asymmetric Michael addition of cycloketone to nitroolefins in water. Chinese Journal of Catalysis, 2014, 35, 1008-1011.	6.9	8
407	High efficiency inverted polymer solar cells with room-temperature titanium oxide/polyethylenimine films as electron transport layers. Journal of Materials Chemistry A, 2014, 2, 17281-17285.	5.2	66
408	Achieving solar overall water splitting with hybrid photosystems of photosystem II and artificial photocatalysts. Nature Communications, 2014, 5, 4647.	5.8	151
409	Construction of anti-1,2-diols bearing chiral tertiary alcohol moiety using free hydroxyacetone as aldol donor by imidazole-based prolineamide catalyst. Tetrahedron, 2014, 70, 6561-6568.	1.0	11
410	Titanium Dioxide-Based Nanomaterials for Photocatalytic Fuel Generations. Chemical Reviews, 2014, 114, 9987-10043.	23.0	2,096
411	A Novel Sr2CulnO3S p-type semiconductor photocatalyst for hydrogen production under visible light irradiation. Journal of Energy Chemistry, 2014, 23, 420-426.	7.1	47
412	Fabrication of multilayered TiO2 nanotube arrays and separable nanotube segments. Journal of Materials Chemistry A, 2014, 2, 4510.	5.2	15
413	A wide visible-light-responsive tunneled MgTa $<$ sub $>$ 0 $<$ sub $>$ 6 \hat{a}^* x $<$ /sub $>$ N $<$ sub $>$ x $<$ /sub $>$ photocatalyst for water oxidation and reduction. Chemical Communications, 2014, 50, 14415-14417.	2.2	7 5
414	High efficiency organic/a-Si hybrid tandem solar cells with complementary light absorption. Journal of Materials Chemistry A, 2014, 2, 15303.	5.2	18

#	Article	IF	CITATIONS
415	Conventional polymer solar cells with power conversion efficiencies increased to >9% by a combination of methanol treatment and an anionic conjugated polyelectrolyte interface layer. RSC Advances, 2014, 4, 50988-50992.	1.7	14
416	Photoelectrochemical Properties of CuCrO2: Characterization of Light Absorption and Photocatalytic H2 Production Performance. Catalysis Letters, 2014, 144, 1487-1493.	1.4	32
417	Thermochemical CO2 splitting reaction with supported LaxA1â^'xFeyB1â^'yO3 (A=Sr, Ce, B=Co, Mn; 0⩽x, yâ© perovskite oxides. Solar Energy, 2014, 103, 425-437.	¹ / ₂ . <mark>1</mark>)	87
418	A Tantalum Nitride Photoanode Modified with a Holeâ€Storage Layer for Highly Stable Solar Water Splitting. Angewandte Chemie - International Edition, 2014, 53, 7295-7299.	7.2	354
419	Sustainable Synthesis of Zeolites without Addition of Both Organotemplates and Solvents. Journal of the American Chemical Society, 2014, 136, 4019-4025.	6.6	233
420	Transfer of Photoinduced Electrons in Anatase–Rutile TiO ₂ Determined by Time-Resolved Mid-Infrared Spectroscopy. Journal of Physical Chemistry C, 2014, 118, 12661-12668.	1.5	102
421	Nitrogen-doped carbon nanotubes derived from Zn–Fe-ZIF nanospheres and their application as efficient oxygen reduction electrocatalysts with in situ generated iron species. Chemical Science, 2013, 4, 2941.	3.7	282
422	Study of the Phase Transformation of Single Particles of Ga ₂ O ₃ by UVâ€Raman Spectroscopy and Highâ€Resolution TEM. Chemistry - an Asian Journal, 2013, 8, 2189-2195.	1.7	22
423	Na+/K+ switch of enantioselectivity in G-quadruplex DNA-based catalysis. Chemical Communications, 2013, 49, 11161.	2.2	48
424	Freestanding silicon films formed on ionic liquid surfaces. Journal of Materials Chemistry A, 2013, 1, 55-58.	5.2	8
425	Enhanced photocatalytic water oxidation on ZnO photoanodes in a borate buffer electrolyte. Catalysis Science and Technology, 2013, 3, 1699.	2.1	8
426	Preparation of Zn–Co–O mixed-metal oxides nanoparticles through a facile coordination polymer based process. RSC Advances, 2013, 3, 4081.	1.7	13
427	Spatial separation of photogenerated electrons and holes among {010} and {110} crystal facets of BiVO4. Nature Communications, 2013, 4, 1432.	5.8	1,458
428	Deep UV resonance Raman spectroscopic study of CnF2n+2molecules: the excitation of C-C if bond. Journal of Raman Spectroscopy, 2013, 44, 266-269.	1.2	18
429	Catalytic performance of different types of iron zeolites in N2O decomposition. Chinese Journal of Catalysis, 2013, 34, 876-888.	6.9	22
430	Identification of Fe2($\hat{1}$ 4-O) and Fe2($\hat{1}$ 4-O)2 sites in Fe/ZSM-35 by in situ resonance Raman spectroscopy. Journal of Catalysis, 2013, 301, 77-82.	3.1	21
431	Influence of extra-framework Al on the structure of the active iron sites in Fe/ZSM-35. Journal of Catalysis, 2013, 300, 251-259.	3.1	35
432	Assembly of ZIF nanostructures around free Pt nanoparticles: efficient size-selective catalysts for hydrogenation of alkenes under mild conditions. Chemical Communications, 2013, 49, 3330.	2.2	131

#	Article	IF	CITATIONS
433	Roles of Cocatalysts in Photocatalysis and Photoelectrocatalysis. Accounts of Chemical Research, 2013, 46, 1900-1909.	7.6	2,368
434	Nitrogen-doped layered oxide Sr5Ta4O15 \hat{a} 2Nx for water reduction and oxidation under visible light irradiation. Journal of Materials Chemistry A, 2013, 1, 5651.	5.2	89
435	Visible light driven overall water splitting using cocatalyst/BiVO4 photoanode with minimized bias. Physical Chemistry Chemical Physics, 2013, 15, 4589.	1.3	194
436	Dual Cocatalysts Loaded Type I CdS/ZnS Core/Shell Nanocrystals as Effective and Stable Photocatalysts for H ₂ Evolution. Journal of Physical Chemistry C, 2013, 117, 11584-11591.	1.5	272
437	Highly Efficient Dehydrogenation of Primary Aliphatic Alcohols Catalyzed by Cu Nanoparticles Dispersed on Rod-Shaped La ₂ O ₂ CO ₃ . ACS Catalysis, 2013, 3, 890-894.	5.5	115
438	Hybrid Artificial Photosynthetic Systems Comprising Semiconductors as Light Harvesters and Biomimetic Complexes as Molecular Cocatalysts. Accounts of Chemical Research, 2013, 46, 2355-2364.	7.6	267
439	Composite Sr2TiO4/SrTiO3(La,Cr) heterojunction based photocatalyst for hydrogen production under visible light irradiation. Journal of Materials Chemistry A, 2013, 1, 7905.	5.2	114
440	Enantioselective Michael addition reactions in water using a DNA-based catalyst. Tetrahedron, 2013, 69, 6585-6590.	1.0	50
441	Structural Modification of TiO2 Nanorod Films with an Influence on the Photovoltaic Efficiency of a Dye-Sensitized Solar Cell (DSSC). Journal of Inorganic and Organometallic Polymers and Materials, 2013, 23, 787-792.	1.9	12
442	Sulfurization-Assisted Cobalt Deposition on Sm ₂ Fhotocatalyst for Water Oxidation under Visible Light Irradiation. Journal of Physical Chemistry C, 2013, 117, 376-382.	1.5	40
443	Finding the "Missing Components―during the Synthesis of TS-1 Zeolite by UV Resonance Raman Spectroscopy. Journal of Physical Chemistry C, 2013, 117, 2844-2848.	1.5	56
444	Synthesis and Photovoltaic Properties of Polythiophene Incorporating with 3,4â€Difluorothiophene Units. Chinese Journal of Chemistry, 2013, 31, 1385-1390.	2.6	5
445	Photocatalytic H ₂ production on TiO ₂ with tuned phase structure via controlling the phase transformation. Journal of Materials Research, 2013, 28, 394-399.	1.2	14
446	Organotemplate-free and one-pot fabrication of nano-rod assembled plate-like micro-sized mordenite crystals. Journal of Materials Chemistry, 2012, 22, 6564.	6.7	28
447	Rücktitelbild: Photocatalytic Overall Water Splitting Promoted by an α-βâ€phase Junction on Ga2O3(Angew. Chem. 52/2012). Angewandte Chemie, 2012, 124, 13356-13356.	1.6	0
448	Hydration of Epoxides on [Co ^{III} (salen)] Encapsulated in Silicaâ€Based Nanoreactors. Angewandte Chemie - International Edition, 2012, 51, 11517-11521.	7. 2	90
449	The Synthesis of Chiral Isotetronic Acids with Amphiphilic Imidazole/Pyrrolidine Catalysts Assembled in Oilâ€inâ€Water Emulsion Droplets. Angewandte Chemie - International Edition, 2012, 51, 13159-13162.	7.2	83
450	Photocatalytic Overall Water Splitting Promoted by an α‑βâ€phase Junction on Ga ₂ O ₃ . Angewandte Chemie - International Edition, 2012, 51, 13089-13092.	7.2	574

#	Article	IF	Citations
451	Promoted activity of Cr(Salen) in a nanoreactor for kinetic resolution of terminal epoxides. Chemical Science, 2012, 3, 2864.	3.7	28
452	Enantioselective Friedel–Crafts reactions in water catalyzed by a human telomeric G-quadruplex DNA metalloenzyme. Chemical Communications, 2012, 48, 6232.	2.2	106
453	The Dalian National Laboratory for Clean Energy. Energy and Environmental Science, 2012, 5, 6277.	15.6	0
454	Entrapment of metal nanoparticles within nanocages of mesoporous silicas aided by co-surfactants. Journal of Materials Chemistry, 2012, 22, 21045.	6.7	18
455	Photocatalytic oxidation of thiophene on BiVO ₄ with dual co-catalysts Pt and RuO ₂ under visible light irradiation using molecular oxygen as oxidant. Energy and Environmental Science, 2012, 5, 6400-6406.	15.6	204
456	Nanomaterials for renewable energy production and storage. Chemical Society Reviews, 2012, 41, 7909.	18.7	856
457	Enantioselective Diels–Alder Reactions with Gâ€Quadruplex DNAâ€Based Catalysts. Angewandte Chemie - International Edition, 2012, 51, 9352-9355.	7.2	128
458	A Thorough Investigation of the Active Titanium Species in TSâ€1 Zeolite by In Situ UV Resonance Raman Spectroscopy. Chemistry - A European Journal, 2012, 18, 13854-13860.	1.7	137
459	Oxygen evolution from water oxidation on molecular catalysts confined in the nanocages of mesoporous silicas. Energy and Environmental Science, 2012, 5, 8229.	15.6	58
460	Enhanced thermostability of enzymes accommodated in thermo-responsive nanopores. Chemical Science, 2012, 3, 3398.	3.7	29
461	Enhanced growth of crystalline-amorphous core-shell silicon nanowires by catalytic thermal CVD using in situ generated tin catalyst. Science China Chemistry, 2012, 55, 2573-2579.	4.2	7
462	Spinel ZnMn2O4 nanoplate assemblies fabricated via "escape-by-crafty-scheme―strategy. Journal of Materials Chemistry, 2012, 22, 13328.	6.7	151
463	Microwave-assisted hydrothermal synthesis of perovskite NaTaO3 nanocrystals and their photocatalytic properties. Journal of Materials Chemistry, 2012, 22, 18808.	6.7	82
464	Systematic morphology and phase control of Mg-ptcda coordination polymers by Ostwald ripening and self-templating. Journal of Materials Chemistry, 2012, 22, 8470.	6.7	23
465	Amino acid assisted synthesis of mesoporous TiO2 nanocrystals for high performance dye-sensitized solar cells. Journal of Materials Chemistry, 2012, 22, 10438.	6.7	24
466	Photocatalytic Water Oxidation on BiVO sub 4 lsub with the Electrocatalyst as an Oxidation Cocatalyst: Essential Relations between Electrocatalyst and Photocatalyst. Journal of Physical Chemistry C, 2012, 116, 5082-5089.	1.5	360
467	Photocatalytic H ₂ production on Pt/TiO ₂ –SO ₄ ^{2∳} with tuned surface-phase structures: enhancing activity and reducing CO formation. Energy and Environmental Science, 2012, 5, 6345-6351.	15.6	89
468	A Hybrid Photocatalytic System Comprising ZnS as Light Harvester and an [Fe ₂ S ₂] Hydrogenase Mimic as Hydrogen Evolution Catalyst. ChemSusChem, 2012, 5, 849-853.	3.6	95

#	Article	IF	CITATIONS
469	Structure and Basicity of Microporous Titanosilicate ETS-10 and Vanadium-Containing ETS-10. Journal of Physical Chemistry C, 2012, 116, 17124-17133.	1.5	9
470	Hydrogen bonding in homochiral dimers of hydroxyesters studied by Raman optical activity spectroscopy. Journal of Raman Spectroscopy, 2012, 43, 503-513.	1.2	9
471	Roles of cocatalysts in Pt–PdS/CdS with exceptionally high quantum efficiency for photocatalytic hydrogen production. Journal of Catalysis, 2012, 290, 151-157.	3.1	324
472	Spectroscopic Evidence of Extra-Framework Heterometallic Oxo-Clusters in Fe/Ga-ZSM-5 Catalysts. Journal of Physical Chemistry Letters, 2011, 2, 190-195.	2.1	8
473	Effect of Metal Doping on Electronic Structure and Visible Light Absorption of SrTiO ₃ and NaTaO ₃ (Metal = Mn, Fe, and Co). Journal of Physical Chemistry C, 2011, 115, 8305-8311.	1.5	181
474	²⁹ Si NMR and UVâ^Raman Investigation of Initial Oligomerization Reaction Pathways in Acid-Catalyzed Silica Solâ^Gel Chemistry. Journal of Physical Chemistry C, 2011, 115, 3562-3571.	1.5	72
475	Recyclable enamine catalysts for asymmetric direct cross-aldol reaction of aldehydes in emulsion media. Green Chemistry, 2011, 13, 1983.	4.6	35
476	Photocatalytic H ₂ Evolution on CdS Loaded with WS ₂ as Cocatalyst under Visible Light Irradiation. Journal of Physical Chemistry C, 2011, 115, 12202-12208.	1.5	376
477	Organotemplate-free synthesis of high-silica ferrierite zeolite induced by CDO-structure zeolite building units. Journal of Materials Chemistry, 2011, 21, 9494.	6.7	76
478	Enhancing hydrogen production activity and suppressing CO formation from photocatalytic biomass reforming on Pt/TiO2 by optimizing anataseâ€"rutile phase structure. Journal of Catalysis, 2011, 278, 329-335.	3.1	127
479	Photocatalytic H2 production on hybrid catalyst system composed of inorganic semiconductor and cobaloximes catalysts. Journal of Catalysis, 2011, 281, 318-324.	3.1	102
480	Effect of Annealing Temperature on TiO2 Nanorod Films Prepared by dc Reactive Magnetron Sputtering for Dye-Sensitized Solar Cells. Journal of Inorganic and Organometallic Polymers and Materials, 2011, 21, 770-776.	1.9	11
481	Crystal Facet Dependence of Water Oxidation on BiVO ₄ Sheets under Visible Light Irradiation. Chemistry - A European Journal, 2011, 17, 1275-1282.	1.7	351
482	UV–Raman and NMR Spectroscopic Studies on the Crystallization of Zeolite A and a New Synthetic Route. Chemistry - A European Journal, 2011, 17, 6162-6169.	1.7	56
483	The Synergistic Effects of Two Co-catalysts on Zn2GeO4 on Photocatalytic Water Splitting. Catalysis Letters, 2010, 134, 78-86.	1.4	109
484	Template-Free Synthesis of Sphere, Rod and Prism Morphologies of CeO2 Oxidation Catalysts. Catalysis Letters, 2010, 137, 28-34.	1.4	34
485	Multifunctional human serum albumin in the surfaceâ€enhanced Raman spectroscopy of porphyrin: demetalation promoter, molecular spacer and stabilizer. Journal of Raman Spectroscopy, 2010, 41, 1615-1620.	1.2	5
486	Controllable synthesis of straight and branched CdTe nanowires using CdO as precursor. , 2010, , .		O

#	Article	IF	CITATIONS
487	UV Raman Spectroscopic Studies on Active Sites and Synthesis Mechanisms of Transition Metal-Containing Microporous and Mesoporous Materials. Accounts of Chemical Research, 2010, 43, 378-387.	7.6	140
488	UV Raman spectroscopic study on the synthesis mechanism and assembly of molecular sieves. Chemical Society Reviews, 2010, 39, 4794.	18.7	99
489	Aerobic oxidative desulfurization of benzothiophene, dibenzothiophene and 4,6-dimethyldibenzothiophene using an Anderson-type catalyst [(C18H37)2N(CH3)2]5[IMo6O24]. Green Chemistry, 2010, 12, 1954.	4.6	166
490	Trap states and carrier dynamics of TiO2 studied by photoluminescence spectroscopy under weak excitation condition. Physical Chemistry Chemical Physics, 2010, 12, 7083.	1.3	240
491	Visible-light-driven hydrogen production with extremely high quantum efficiency on Pt–PdS/CdS photocatalyst. Journal of Catalysis, 2009, 266, 165-168.	3.1	1,039
492	From Molecular Fragments to Crystals: A UV Raman Spectroscopic Study on the Mechanism of Feâ€ZSMâ€5 Synthesis. Chemistry - A European Journal, 2009, 15, 3268-3276.	1.7	89
493	Coadsorption of trimethyl phosphine and thiocyanate on colloidal silver: a SERS study combined with theoretical calculations. Journal of Raman Spectroscopy, 2009, 40, 387-393.	1.2	8
494	In Situ UV Raman Spectroscopic Study on the Synthesis Mechanism of AlPOâ€5. Angewandte Chemie - International Edition, 2009, 48, 8743-8747.	7.2	72
495	Alkali-hydrolysis of D-glucono-delta-lactone studied by chiral Raman and circular dichroism spectroscopies. Science in China Series B: Chemistry, 2009, 52, 552-558.	0.8	6
496	Shape-Controlled Copper Selenide Nanocubes Synthesized by an Electrochemical Crystallization Method. Journal of Physical Chemistry C, 2009, 113, 10833-10837.	1.5	48
497	UV Raman Spectroscopic Study on TiO ₂ . II. Effect of Nanoparticle Size on the Outer/Inner Phase Transformations. Journal of Physical Chemistry C, 2009, 113, 1698-1704.	1.5	114
498	Basic metal carbonate supported gold nanoparticles: enhanced performance in aerobic alcohol oxidation. Green Chemistry, 2009, 11 , 322 .	4.6	52
499	Functionalized periodic mesoporous organosilicas for catalysis. Journal of Materials Chemistry, 2009, 19, 1945.	6.7	262
500	The enantioselective cyanosilylation of aldehydes on a chiral VO(Salen) complex encapsulated in SBA-16. Green Chemistry, 2009, 11, 257-264.	4.6	76
501	Chirally functionalized mesoporous organosilicas with built-in BINAP ligand for asymmetric catalysis. Journal of Materials Chemistry, 2009, 19, 8009.	6.7	61
502	The nanocomposites of SO3H-hollow-nanosphere and chiral amine for asymmetric aldol reaction. Journal of Materials Chemistry, 2009, 19, 8580.	6.7	63
503	Evidence for the binding mode of porphyrins to G-quadruplex DNA. Physical Chemistry Chemical Physics, 2009, 11, 4025.	1.3	87
504	H2 production with low CO selectivity from photocatalytic reforming of glucose on metal/TiO2 catalysts. Science in China Series B: Chemistry, 2008, 51, 97-100.	0.8	64

#	Article	IF	Citations
505	In Situ UV Raman Spectroscopic Studies on the Synthesis Mechanism of Zeolite X. Chemistry - A European Journal, 2008, 14, 5125-5129.	1.7	7 5
506	Importance of the Relationship between Surface Phases and Photocatalytic Activity of TiO ₂ . Angewandte Chemie - International Edition, 2008, 47, 1766-1769.	7.2	1,093
507	Direct synthesis of highly ordered amine-functionalized mesoporous ethane-silicas. Microporous and Mesoporous Materials, 2008, 109, 172-183.	2.2	86
508	Surface Phase Composition of Iron Molybdate Catalysts Studied by UV Raman Spectroscopy. Journal of Physical Chemistry C, 2008, 112, 9387-9393.	1.5	39
509	Enhancement of Photocatalytic H ₂ Evolution on CdS by Loading MoS ₂ as Cocatalyst under Visible Light Irradiation. Journal of the American Chemical Society, 2008, 130, 7176-7177.	6.6	1,752
510	Super-microporous organosilicas synthesized from well-defined nanobuilding units. Journal of Materials Chemistry, 2008, 18, 450-457.	6.7	35
511	Transfer hydrogenation of aldehydes on amphiphilic catalyst assembled at the interface of emulsion droplets. Green Chemistry, 2008, 10, 608.	4.6	64
512	Framework Fe lons in Fe-ZSM-5 Zeolite Studied by UV Resonance Raman Spectroscopy and Density Functional Theory Calculations. Journal of Physical Chemistry C, 2008, 112, 16036-16041.	1.5	64
513	Kinetics of Photogenerated Electrons Involved in Photocatalytic Reaction of Methanol on Pt/TiO2. Chinese Journal of Chemical Physics, 2007, 20, 483-488.	0.6	7
514	Fourier Transform Infrared Spectroscopic Study on the Adsorption of Ethyl Pyruvate on Pt/Al2O3:  Side Reactions Suppressed by Adsorbed Hydrogen and Cinchonidine. Journal of Physical Chemistry C, 2007, 111, 823-829.	1.5	15
515	Chiral catalysis in nanopores of mesoporous materials. Chemical Communications, 2007, , 547-558.	2.2	193
516	Photoluminescence Characteristics of TiO2and Their Relationship to the Photoassisted Reaction of Water/Methanol Mixture. Journal of Physical Chemistry C, 2007, 111, 693-699.	1.5	337
517	Mechanistic Studies of Photocatalytic Reaction of Methanol for Hydrogen Production on Pt/TiO2by in situ Fourier Transform IR and Time-Resolved IR Spectroscopy. Journal of Physical Chemistry C, 2007, 111, 8005-8014.	1.5	192
518	Controlling Reaction Pathways for Alcohol Dehydration and Dehydrogenation over FeSBA-15 Catalysts. Catalysis Letters, 2007, 117, 18-24.	1.4	28
519	A Spectroscopic Study on the Interactions of Porphyrin with G-Quadruplex DNAs. Biochemistry, 2006, 45, 6681-6691.	1.2	244
520	Preparation and characterization of ordered mesoporous carbons on SBA-15 template. Journal of Materials Chemistry, 2006, 16, 1350.	6.7	27
521	UV Raman Spectroscopic Study on TiO2. I. Phase Transformation at the Surface and in the Bulk. Journal of Physical Chemistry B, 2006, 110, 927-935.	1.2	852
522	Selective hydrogenation of cinnamaldehyde over carbon nanotube supported pd-ru catalyst. Reaction Kinetics and Catalysis Letters, 2006, 88, 269-276.	0.6	40

#	Article	IF	CITATIONS
523	Synthesis of mesoporous aluminosilicates with low Si/Al ratios using a single-source molecular precursor under acidic conditions. Journal of Porous Materials, 2006, 13, 187-193.	1.3	29
524	Catalytic Performance of the Sb–V Mixed Oxide on Sb–V–O/SiO2 Catalysts in Methane Selective Oxidation to Formaldehyde. Catalysis Letters, 2006, 106, 89-93.	1.4	12
525	Sulfur-substituted and zinc-doped In(OH)3: A new class of catalyst for photocatalytic H2 production from water under visible light illumination. Journal of Catalysis, 2006, 237, 322-329.	3.1	138
526	Direct synthesis of highly ordered Fe-SBA-15 mesoporous materials under weak acidic conditions. Microporous and Mesoporous Materials, 2005, 84, 41-49.	2.2	181
527	Selective Oxidations on Recoverable Catalysts Assembled in Emulsions. Topics in Catalysis, 2005, 35, 169-175.	1.3	74
528	CO adsorption and correlation between CO surface coverage and activity/selectivity of preferential CO oxidation over supported Ag catalyst: an in situ FTIR study. Catalysis Letters, 2005, 101, 21-26.	1.4	35
529	TPR and XPS studies of NaCl modified VCe0.2Cu0.8catalysts for direct propylene epoxidation. Reaction Kinetics and Catalysis Letters, 2005, 86, 219-224.	0.6	12
530	Mesoporous Ethaneâ^'Silicas Functionalized with trans-(1R,2R)-Diaminocyclohexane as Heterogeneous Chiral Catalysts. Chemistry of Materials, 2005, 17, 6154-6160.	3.2	67
531	Highly ordered periodic mesoporous ethanesilica synthesized under neutral conditions. Journal of Materials Chemistry, 2005, 15, 2562.	6.7	53
532	Post-grafting preparation of large-pore mesoporous materials with localized high content titanium doping. Journal of Materials Chemistry, 2005, 15, 661.	6.7	28
533	Ammonia-treated activated carbon as support of Ru-Ba catalyst for ammonia synthesis. Reaction Kinetics and Catalysis Letters, 2004, 83, 39-45.	0.6	9
534	Ultra-Deep Desulfurization of Diesel: Oxidation with a Recoverable Catalyst Assembled in Emulsion. Chemistry - A European Journal, 2004, 10, 2277-2280.	1.7	270
535	The visible luminescent characteristics of ZnO supported on SiO2powder. Physical Chemistry Chemical Physics, 2004, 6, 4473-4479.	1.3	33
536	Adsorption and reaction of thiophene and H2S on Mo2C/Al2O3 catalyst studied by in situ FT-IR spectroscopy. Physical Chemistry Chemical Physics, 2004, 6, 5596.	1.3	10
537	An IR study on the surface passivation of Mo2C/Al2O3 catalyst with O2, H2O and CO2. Physical Chemistry Chemical Physics, 2004, 6, 5603.	1.3	33
538	Water reduction and oxidation on Pt–Ru/Y2Ta2O5N2catalyst under visible light irradiation. Chemical Communications, 2004, , 2192-2193.	2.2	157
539	Direct Synthesis of Alâ^'SBA-15 Mesoporous Materials via Hydrolysis-Controlled Approach. Journal of Physical Chemistry B, 2004, 108, 9739-9744.	1.2	236
540	Chiral Synthesis on Catalysts Immobilized in Microporous and Mesoporous Materials. Catalysis Reviews - Science and Engineering, 2004, 46, 419-492.	5.7	340

#	Article	IF	Citations
541	Some Insights into the Preparation of Pt/ \hat{A} -Al2O3Catalysts for the Enantioselective Hydrogenation of \hat{I} ±-Ketoesters. Topics in Catalysis, 2003, 25, 63-70.	1.3	29
542	Title is missing!. Catalysis Surveys From Asia, 2003, 7, 103-119.	1.0	11
543	Epoxidation of Propylene over Ag-CuCl Catalysts Using Air as the Oxidant. Catalysis Letters, 2003, 86, 43-49.	1.4	43
544	Structural Characteristics and Redox Behaviors of Ce1-xCuxOy Solid Solutions. Chemistry of Materials, 2003, 15, 4761-4767.	3.2	196
545	Unusual calcination temperature dependent tetragonal–monoclinic transitions in rare earth-doped zirconia nanocrystals. Physical Chemistry Chemical Physics, 2003, 5, 4008-4014.	1.3	17
546	Phase transformation in the surface region of zirconia and doped zirconia detected by UV Raman spectroscopy. Physical Chemistry Chemical Physics, 2003, 5, 5326.	1.3	73
547	Preparation and Adsorption Properties for Thiophene of Nanostructured W2C on Ultrahigh-Surface-Area Carbon Materials. Chemistry of Materials, 2003, 15, 4846-4853.	3.2	62
548	Carbon Monoxide Adsorption on Molybdenum Phosphides:Â Fourier Transform Infrared Spectroscopic and Density Functional Theory Studies. Journal of Physical Chemistry B, 2003, 107, 13698-13702.	1.2	26
549	In Situ FT-IR Spectroscopic Studies of CO Adsorption on Fresh Mo2C/Al2O3Catalyst. Journal of Physical Chemistry B, 2003, 107, 7088-7094.	1.2	71
550	Molybdenum containing surface complex for olefin epoxidation. New Journal of Chemistry, 2003, 27, 319-323.	1.4	29
551	Microcalorimetric and IR spectroscopic studies of CO adsorption on molybdenum nitride catalysts. Physical Chemistry Chemical Physics, 2003, 5, 1703-1707.	1.3	5
552	FT-IR Spectroscopic Study of the Oxidation of Chlorobenzene over Mn-Based Catalyst. Langmuir, 2002, 18, 6229-6232.	1.6	57
553	Direct Synthesis and Characterization of Titanium-Substituted Mesoporous Molecular Sieve SBA-15. Chemistry of Materials, 2002, 14, 3413-3421.	3.2	278
554	UV Raman spectroscopic study on the phase transformation of ZrO2, Y2O3-ZrO2 and SO42?/ZrO2. Journal of Raman Spectroscopy, 2002, 33, 301-308.	1.2	169
555	Title is missing!. Catalysis Letters, 2002, 79, 21-25.	1.4	55
556	Title is missing!. Catalysis Letters, 2002, 84, 89-93.	1.4	2
557	Phase Transformation in the Surface Region of Zirconia Detected by UV Raman Spectroscopy. Journal of Physical Chemistry B, 2001, 105, 8107-8111.	1.2	254
558	Identifying Framework Titanium in TS-1 Zeolite by UV Resonance Raman Spectroscopy. Journal of Physical Chemistry B, 2001, 105, 2993-2997.	1.2	144

#	Article	IF	CITATIONS
559	Tiâ-'MCM-41 Synthesized from Colloidal Silica and Titanium Trichloride: Synthesis, Characterization, and Catalysis. Chemistry of Materials, 2001, 13, 994-998.	3.2	78
560	Structure and Redox Properties of CexTi1-xO2Solid Solution. Chemistry of Materials, 2001, 13, 197-202.	3.2	142
561	A novel reaction on a Mo2N \hat{l}^3 -Al2O3 catalyst: low-temperature isomerization of but-1-ene. Chemical Communications, 2001, , 701-702.	2.2	13
562	Surface-enhanced Raman scattering of xanthopterin adsorbed on colloidal silver. Journal of Raman Spectroscopy, 2001, 32, 1004-1007.	1.2	12
563	Title is missing!. Catalysis Letters, 2001, 77, 251-254.	1.4	31
564	Direct spectroscopic evidence for vanadium species in V-MCM-41 molecular sieve characterized by UV resonance Raman spectroscopy. Chemical Communications, 2000, , 677-678.	2.2	69
565	FTIR study of CO and NO adsorbed on nitrided CoMo/Al2O3 catalysts. Physical Chemistry Chemical Physics, 2000, 2, 3313-3317.	1.3	16
566	Catalytic Decomposition of Ammonia over Nitrided MoNx/α-Al2O3 and NiMoNy/α-Al2O3 Catalysts. Industrial & Decomposition of Ammonia over Nitrided MoNx/α-Al2O3 and NiMoNy/α-Al2O3 Catalysts.	1.8	125
567	Title is missing!. Catalysis Letters, 1999, 63, 167-171.	1.4	26
568	The effect of oxygen on the aromatization of methane over the Mo/HZSMâ€5 catalyst. Catalysis Letters, 1999, 63, 73-77.	1.4	61
569	Algebraic approach to stretching vibrational spectrum of H2S. Science Bulletin, 1999, 44, 1961-1964.	1.7	7
570	UV Resonance Raman Spectroscopic Identification of Titanium Atoms in the Framework of TS-1 Zeolite. Angewandte Chemie - International Edition, 1999, 38, 2220-2222.	7.2	220
571	Structure and base properties of calcined hydrotalcites. Chinese Journal of Chemistry, 1999, 17, 319-330.	2.6	4
572	UV Resonance Raman Spectroscopic Identification of Titanium Atoms in the Framework of TS-1 Zeolite. , 1999, 38, 2220.		6
573	Surface Sites of Alumina-Supported Molybdenum Nitride Characterized by FTIR, TPD-MS, and Volumetric Chemisorption. Journal of Physical Chemistry B, 1998, 102, 6986-6993.	1.2	48
574	Ultraviolet Raman spectroscopy of catalysts and other solids. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1997, 15, 1679-1684.	0.9	68
575	Surface oxygen species and their reactivities in the mild oxidation of ethylene on cerium oxide studied by FT-IR spectroscopy. Catalysis Letters, 1992, 12, 297-305.	1.4	33
576	Room Temperature Allenation of Terminal Alkynes with Aldehydes. Angewandte Chemie, 0, , .	1.6	2

#	Article	IF	CITATIONS
577	CO 2 Hydrogenation to Methanol over Cd 4 /TiO 2 Catalyst: Insight into Multifunctional Interface. ChemCatChem, 0, , .	1.8	1
578	Atomic Layer Deposition of Gold Nanoparticles with Controlled Size and Distribution on Titania Support. ChemNanoMat, 0 , , .	1.5	1
579	Tuning the Anisotropic Facet of Lead Chromate Photocatalysts to Promote Spatial Charge Separation. Angewandte Chemie, 0, , .	1.6	O
580	Hydrogenation of Alkyl Carboxylic Acids with Tetrahydropyrimidine-Derived Iridium Complexes under Mild Conditions. ACS Catalysis, 0, , 9238-9243.	5 . 5	0