Lei Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6846226/publications.pdf Version: 2024-02-01

		687363	501196
32	811	13	28
papers	citations	h-index	g-index
32	32	32	837
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Genetic engineering of the branchedâ€chain fatty acid biosynthesis pathway to enhance surfactin production from <i>Bacillus subtilis</i> . Biotechnology and Applied Biochemistry, 2023, 70, 238-248.	3.1	5
2	Electron donors and mediators in the thermodynamics and kinetics of CO2 bioreduction. Renewable and Sustainable Energy Reviews, 2022, 156, 111997.	16.4	5
3	Discovery of the nonâ€cosmopolitan lineages in <i>Candidatus</i> Thermoprofundales. Environmental Microbiology, 2022, 24, 3063-3080.	3.8	3
4	Dominant and Active Methanogens in the Production Waters From a High-Temperature Petroleum Reservoir by DNA- and RNA-Based Analysis. Geomicrobiology Journal, 2021, 38, 191-198.	2.0	4
5	Microbial Lipopeptide-Producing Strains and Their Metabolic Roles under Anaerobic Conditions. Microorganisms, 2021, 9, 2030.	3.6	10
6	Aminirod propionatiphilus gen. nov., sp. nov., an isolated secondary fermenter in methanogenic hydrocarbon-degrading communities. International Biodeterioration and Biodegradation, 2021, 165, 105323.	3.9	3
7	New evidence for a hydroxylation pathway for anaerobic alkane degradation supported by analyses of functional genes and signature metabolites in oil reservoirs. AMB Express, 2021, 11, 18.	3.0	10
8	A high yield method for the direct amidation of longâ€chain fatty acids. International Journal of Chemical Kinetics, 2020, 52, 99-108.	1.6	7
9	Simultaneous detection of transcribed functional assA gene and the corresponding metabolites of linear alkanes (C4, C5, and C7) in production water of a low-temperature oil reservoir. Science of the Total Environment, 2020, 746, 141290.	8.0	4
10	Anaerobic Degradation of Paraffins by Thermophilic Actinobacteria under Methanogenic Conditions. Environmental Science & Technology, 2020, 54, 10610-10620.	10.0	53
11	Assessment of Five Electronâ€5huttling Molecules in the Extracellular Electron Transfer of Electromethanogenesis by using <i>Methanosarcina barkeri</i> . ChemElectroChem, 2020, 7, 3783-3789.	3.4	11
12	Insight into the Adsorption Mechanisms of CO2, CH4, and Their Mixtures on Kerogen Type IIIA. Energy & Fuels, 2020, 34, 14300-14311.	5.1	7
13	Synthesis and mass spectra of rearrangement bio-signature metabolites of anaerobic alkane degradation via fumarate addition. Analytical Biochemistry, 2020, 600, 113746.	2.4	2
14	Long-chain n-alkane biodegradation coupling to methane production in an enriched culture from production water of a high-temperature oil reservoir. AMB Express, 2020, 10, 63.	3.0	13
15	Methanogenic biodegradation of C9 to C12n-alkanes initiated by Smithella via fumarate addition mechanism. AMB Express, 2020, 10, 23.	3.0	22
16	Methanogenic Degradation of Long <i>n</i> -Alkanes Requires Fumarate-Dependent Activation. Applied and Environmental Microbiology, 2019, 85, .	3.1	22
17	Bioconversion Pathway of CO2 in the Presence of Ethanol by Methanogenic Enrichments from Production Water of a High-Temperature Petroleum Reservoir. Energies, 2019, 12, 918.	3.1	2
18	Direct microbial transformation of carbon dioxide to value-added chemicals: A comprehensive analysis and application potentials. Bioresource Technology, 2019, 288, 121401.	9.6	40

Lei Zhou

#	Article	IF	CITATIONS
19	Simultaneous methanogenesis and acetogenesis from the greenhouse carbon dioxide by an enrichment culture supplemented with zero-valent iron. Renewable Energy, 2019, 132, 861-870.	8.9	32
20	Methanogenic degradation of branched alkanes in enrichment cultures of production water from a high-temperature petroleum reservoir. Applied Microbiology and Biotechnology, 2019, 103, 2391-2401.	3.6	21
21	Accelerated CO2 reduction to methane for energy by zero valent iron in oil reservoir production waters. Energy, 2018, 147, 663-671.	8.8	27
22	Characterization of bacterial composition and diversity in a long-term petroleum contaminated soil and isolation of high-efficiency alkane-degrading strains using an improved medium. World Journal of Microbiology and Biotechnology, 2018, 34, 34.	3.6	48
23	Microbial reduction of CO2 from injected NaH13CO3 with degradation of n-hexadecane in the enrichment culture derived from a petroleum reservoir. International Biodeterioration and Biodegradation, 2018, 127, 192-200.	3.9	12
24	Propionate metabolism and diversity of relevant functional genes by in silico analysis and detection in subsurface petroleum reservoirs. World Journal of Microbiology and Biotechnology, 2017, 33, 182.	3.6	6
25	Diversity and Composition of Sulfate-Reducing Microbial Communities Based on Genomic DNA and RNA Transcription in Production Water of High Temperature and Corrosive Oil Reservoir. Frontiers in Microbiology, 2017, 8, 1011.	3.5	63
26	Formate-Dependent Microbial Conversion of CO2 and the Dominant Pathways of Methanogenesis in Production Water of High-temperature Oil Reservoirs Amended with Bicarbonate. Frontiers in Microbiology, 2016, 7, 365.	3.5	19
27	High Frequency of Thermodesulfovibrio spp. and Anaerolineaceae in Association with Methanoculleus spp. in a Long-Term Incubation of n-Alkanes-Degrading Methanogenic Enrichment Culture. Frontiers in Microbiology, 2016, 7, 1431.	3.5	95
28	Synthesis and Characterization of Anaerobic Degradation Biomarkers of n-Alkanes via Hydroxylation/Carboxylation Pathways. European Journal of Mass Spectrometry, 2016, 22, 31-37.	1.0	7
29	Activation of CO2-reducing methanogens in oil reservoir after addition of nutrient. Journal of Bioscience and Bioengineering, 2016, 122, 740-747.	2.2	12
30	Analyses of n-alkanes degrading community dynamics of a high-temperature methanogenic consortium enriched from production water of a petroleum reservoir by a combination of molecular techniques. Ecotoxicology, 2012, 21, 1680-1691.	2.4	67
31	A twoâ€step synthesis of deuterium labeled 8, 8, 9, 9â€ <i>d</i> ₄ â€hexadecane from nonanoic acid. Journal of Labelled Compounds and Radiopharmaceuticals, 2012, 55, 158-160.	1.0	4
32	Microbial communities involved in anaerobic degradation of alkanes. International Biodeterioration and Biodegradation, 2011, 65, 1-13.	3.9	175