Rainer K Sachs

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6845531/publications.pdf

Version: 2024-02-01

59	3,426	24 h-index	58
papers	citations		g-index
61	61	61	3133
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Quantitative modeling of carcinogenesis induced by single beams or mixtures of space radiations using targeted and non-targeted effects. Scientific Reports, 2021, 11, 23467.	3.3	5
2	Commentary onÂ"Simulating galactic cosmic ray effects: Synergy modeling of murine tumor prevalence after exposure to two one-ion beams in rapid sequence". Life Sciences in Space Research, 2020, 26, 173-174.	2.3	1
3	Simulating galactic cosmic ray effects: Synergy modeling of murine tumor prevalence after exposure to two one-ion beams in rapid sequence. Life Sciences in Space Research, 2020, 25, 107-118.	2.3	16
4	Synergy theory for murine Harderian gland tumours after irradiation by mixtures of high-energy ionized atomic nuclei. Radiation and Environmental Biophysics, 2019, 58, 151-166.	1.4	14
5	Scaling Human Cancer Risks from Low LET to High LET when Dose-Effect Relationships are Complex. Radiation Research, 2017, 187, 486-492.	1.5	32
6	Synergy Theory in Radiobiology. Radiation Research, 2017, 189, 225.	1.5	12
7	Mixed Beam Murine Harderian Gland Tumorigenesis: Predicted Dose-Effect Relationships if neither Synergism nor Antagonism Occurs. Radiation Research, 2016, 186, 577.	1.5	11
8	lonizing radiation exposures in treatments of solid neoplasms are not associated with subsequent increased risks of chronic lymphocytic leukemia. Leukemia Research, 2016, 43, 9-12.	0.8	12
9	Stochastic Process Pharmacodynamics: Dose Timing in Neonatal Gentamicin Therapy as an Example. AAPS Journal, 2015, 17, 447-456.	4.4	2
10	Why is there so much therapy-related AML and MDS and so little therapy-related CML?. Leukemia Research, 2014, 38, 1162-1164.	0.8	17
11	Radiotherapy-Induced Carcinogenesis and Leukemogenesis: Mechanisms and Quantitative Modeling. Medical Radiology, 2014, , 205-226.	0.1	2
12	Etiology and Treatment of Hematological Neoplasms: Stochastic Mathematical Models. Advances in Experimental Medicine and Biology, 2014, 844, 317-346.	1.6	0
13	Republication of: Contributions to the theory of pure gravitational radiation. Exact solutions of the field equations of the general theory of relativity II. General Relativity and Gravitation, 2013, 45, 2691-2753.	2.0	19
14	Repopulation of interacting tumor cells during fractionated radiotherapy: Stochastic modeling of the tumor control probability. Medical Physics, 2013, 40, 121716.	3.0	14
15	Quantitative modeling of chronic myeloid leukemia: insights from radiobiology. Blood, 2012, 119, 4363-4371.	1.4	26
16	We Forget at Our Peril the Lessons Built into the $\hat{l}\pm /\hat{l}^2$ Model. International Journal of Radiation Oncology Biology Physics, 2012, 82, 1312-1314.	0.8	23
17	Republication of: Observations in cosmology. General Relativity and Gravitation, 2011, 43, 337-358.	2.0	8
18	A Multicellular Basis for the Origination of Blast Crisis in Chronic Myeloid Leukemia. Cancer Research, 2011, 71, 2838-2847.	0.9	16

#	Article	IF	Citations
19	Modeling progression in radiation-induced lung adenocarcinomas. Radiation and Environmental Biophysics, 2010, 49, 169-176.	1.4	10
20	A Rapid-Mutation Approximation for Cell Population Dynamics. Bulletin of Mathematical Biology, 2010, 72, 359-374.	1.9	3
21	The Balance Between Initiation and Promotion in Radiation-Induced Murine Carcinogenesis. Radiation Research, 2010, 174, 357-366.	1.5	14
22	Cancer-causing karyotypes: chromosomal equilibria between destabilizing aneuploidy and stabilizing selection for oncogenic function. Cancer Genetics and Cytogenetics, 2009, 188, 1-25.	1.0	57
23	A new view of radiation-induced cancer: integrating short- and long-term processes. Part I: Approach. Radiation and Environmental Biophysics, 2009, 48, 263-274.	1.4	66
24	A new view of radiation-induced cancer: integrating short- and long-term processes. Part II: second cancer risk estimation. Radiation and Environmental Biophysics, 2009, 48, 275-286.	1.4	75
25	Triggering-Response Model for Radiation-Induced Bystander Effects. Radiation Research, 2009, 171, 320-331.	1.5	35
26	Stochastic Population Dynamic Effects for Lung Cancer Progression. Radiation Research, 2009, 172, 383-393.	1.5	17
27	Cancer drug resistance: The central role of the karyotypeâ ⁻ †. Drug Resistance Updates, 2007, 10, 51-58.	14.4	94
28	Interpreting Chromosome Aberration Spectra. Journal of Computational Biology, 2007, 14, 144-155.	1.6	1
29	Second cancers after fractionated radiotherapy: Stochastic population dynamics effects. Journal of Theoretical Biology, 2007, 249, 518-531.	1.7	44
30	A comparison of mantle versus involved-field radiotherapy for Hodgkin's lymphoma: reduction in normal tissue dose and second cancer risk. Radiation Oncology, 2007, 2, 13.	2.7	128
31	A Robust Procedure for Removing Background Damage in Assays of Radiation-Induced DNA Fragment Distributions. Radiation Research, 2006, 166, 908-916.	1.5	8
32	Clusters of DNA Double-Strand Breaks Induced by Different Doses of Nitrogen lons for Various LETs: Experimental Measurements and Theoretical Analyses. Radiation Research, 2006, 166, 917-927.	1.5	35
33	Estimating radiation-induced cancer risks at very low doses: rationale for using a linear no-threshold approach. Radiation and Environmental Biophysics, 2006, 44, 253-256.	1.4	141
34	Radiation-Induced Leukemia at Doses Relevant to Radiation Therapy: Modeling Mechanisms and Estimating Risks. Journal of the National Cancer Institute, 2006, 98, 1794-1806.	6.3	52
35	Modeling Intercellular Interactions during Carcinogenesis. Radiation Research, 2005, 164, 324-331.	1.5	25
36	Solid tumor risks after high doses of ionizing radiation. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 13040-13045.	7.1	163

#	Article	IF	Citations
37	Comparing DNA Damage-Processing Pathways by Computer Analysis of Chromosome Painting Data. Journal of Computational Biology, 2004, 11, 626-641.	1.6	15
38	Cancer risks attributable to low doses of ionizing radiation: Assessing what we really know. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 13761-13766.	7.1	1,466
39	Using Graph Theory to Describe and Model Chromosome Aberrations. Radiation Research, 2002, 158, 556-567.	1.5	15
40	Chromosomes are predominantly located randomly with respect to each other in interphase human cells. Journal of Cell Biology, 2002, 159, 237-244.	5.2	89
41	Radiation-induced chromosome aberrations: Insights gained from biophysical modeling. BioEssays, 2002, 24, 714-723.	2.5	86
42	Biologically based risk estimation for radiation-induced CML. Radiation and Environmental Biophysics, 2001, 40, 1-9.	1.4	21
43	On target cell numbers in radiation-induced H4 - RET mediated papillary thyroid cancer. Radiation and Environmental Biophysics, 2001, 40, 191-197.	1.4	6
44	Radiation-produced chromosome aberrations: colourful clues. Trends in Genetics, 2000, 16, 143-146.	6.7	51
45	Locations of radiation-produced DNA double strand breaks along chromosomes: a stochastic cluster process formalism. Mathematical Biosciences, 1999, 159, 165-187.	1.9	30
46	Misrejoining of Double-Strand Breaks after X Irradiation: Relating Moderate to Very High Doses by a Markov Model. Radiation Research, 1998, 149, 59.	1. 5	22
47	The mechanistic basis of the linear-quadratic formalism. Medical Physics, 1998, 25, 2071-2073.	3.0	41
48	Intra-Arm and Interarm Chromosome Intrachanges: Tools for Probing the Geometry and Dynamics of Chromatin. Radiation Research, 1997, 148, 330.	1.5	45
49	Computer Simulation of Data on Chromosome Aberrations Produced by X Rays or Alpha Particles and Detected by Fluorescence In Situ Hybridization. Radiation Research, 1997, 148, S93.	1.5	24
50	A two-backbone polymer model for interphase chromosome geometry. Bulletin of Mathematical Biology, 1997, 59, 325-337.	1.9	4
51	A two-backbone polymer model for interphase chromosome geometry. Bulletin of Mathematical Biology, 1997, 59, 325-337.	1.9	4
52	Dose timing in tumor radiotherapy: Considerations of cell number stochasticity. Mathematical Biosciences, 1996, 138, 131-146.	1.9	18
53	A convenient extension of the linear-quadratic model to include redistribution and reoxygenation. International Journal of Radiation Oncology Biology Physics, 1995, 32, 379-390.	0.8	110
54	Chromosome aberrations produced by ionizing radiation: Monte Carlo simulations and chromosome painting data. Bioinformatics, 1995, 11, 389-397.	4.1	5

#	Article	IF	CITATIONS
55	Ionizing radiation damage to cells: Effects of cell cycle redistribution. Mathematical Biosciences, 1995, 126, 147-170.	1.9	13
56	Optimizing the time course of brachytherapy and other accelerated radiotherapeutic protocols. International Journal of Radiation Oncology Biology Physics, 1994, 29, 893-901.	0.8	55
57	Track Structure, Chromosome Geometry and Chromosome Aberrations., 1994, 63, 93-113.		4
58	DNA damage caused by ionizing radiation. Mathematical Biosciences, 1992, 112, 271-303.	1.9	43
59	Joint oxygen-glucose deprivation as the cause of necrosis in a tumor analog. Journal of Cellular Physiology, 1988, 134, 167-178.	4.1	47