Jaheon Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/684543/publications.pdf Version: 2024-02-01

Ιλήξον Κιμ

#	Article	IF	CITATIONS
1	Metal imidazolate sulphate frameworks as a variation of zeolitic imidazolate frameworks. Chemical Communications, 2022, 58, 2983-2986.	4.1	1
2	Reversible ammonia uptake at room temperature in a robust and tunable metal–organic framework. RSC Advances, 2022, 12, 7605-7611.	3.6	2
3	Microporosity Enhancement in a <scp>Oneâ€Dimensional</scp> Imidazolium Caged <scp>Metalâ€Organic</scp> Framework by Highly Selective <scp>Postsynthetic</scp> Removal of Inner Yttrium Clusters. Bulletin of the Korean Chemical Society, 2021, 42, 1020-1023.	1.9	5
4	Two-step gas adsorption induced by the transmetallation in a two-dimensional metal–organic framework. Chemical Communications, 2020, 56, 9727-9730.	4.1	2
5	Universal Gas-Uptake Behavior of a Zeolitic Imidazolate Framework ZIF-8 at High Pressure. Journal of Physical Chemistry C, 2019, 123, 25769-25774.	3.1	10
6	Formation and Encapsulation of All-Inorganic Lead Halide Perovskites at Room Temperature in Metal–Organic Frameworks. Journal of Physical Chemistry Letters, 2019, 10, 2270-2277.	4.6	77
7	Separation of Acetylene from Carbon Dioxide and Ethylene by a Waterâ€Stable Microporous Metal–Organic Framework with Aligned Imidazolium Groups inside the Channels. Angewandte Chemie - International Edition, 2018, 57, 7869-7873.	13.8	218
8	Porosity Properties of the Conformers of Sodalite-like Zeolitic Imidazolate Frameworks. Journal of the American Chemical Society, 2018, 140, 14586-14589.	13.7	19
9	Compositions and Structures of Zeolitic Imidazolate Frameworks. Israel Journal of Chemistry, 2018, 58, 1075-1088.	2.3	48
10	Separation of Acetylene from Carbon Dioxide and Ethylene by a Waterâ€Stable Microporous Metal–Organic Framework with Aligned Imidazolium Groups inside the Channels. Angewandte Chemie, 2018, 130, 7995-7999.	2.0	64
11	Synthetic control of coincidental formation of an N-heterocyclic carbene–copper(<scp>i</scp>) complex and imidazolium cations within metal–organic frameworks. CrystEngComm, 2017, 19, 1528-1534.	2.6	17
12	Thermal decomposition pathways of nitro-functionalized metal–organic frameworks. Chemical Communications, 2017, 53, 7808-7811.	4.1	12
13	Porosity Changes in a Metal–Organic Framework <scp>HKUST</scp> â€1 by Controlled Hydrolysis. Bulletin of the Korean Chemical Society, 2016, 37, 767-770.	1.9	0
14	High-Pressure Chemistry of a Zeolitic Imidazolate Framework Compound in the Presence of Different Fluids. Journal of the American Chemical Society, 2016, 138, 11477-11480.	13.7	40
15	Isolation and Crystal Structure Determination of Piperazine Dicarbamate Obtained from a Direct Reaction between Piperazine and Carbon Dioxide in Methanol. Bulletin of the Korean Chemical Society, 2016, 37, 1854-1857.	1.9	6
16	Hydrogen-bonding networks of purine derivatives and their bilayers for guest intercalation. CrystEngComm, 2016, 18, 62-67.	2.6	1
17	Chemical Property Change in a Metalâ€Organic Framework by Fluoro Functionality. Bulletin of the Korean Chemical Society, 2015, 36, 327-332.	1.9	11
18	In Situ Neutron Powder Diffraction and X-ray Photoelectron Spectroscopy Analyses on the Hydrogenation of MOF-5 by Pt-Doped Multiwalled Carbon Nanotubes. Journal of Physical Chemistry C, 2014, 118, 5691-5699.	3.1	17

JAHEON KIM

#	Article	IF	CITATIONS
19	Two porous metal–organic frameworks containing zinc–calcium clusters and calcium cluster chains. CrystEngComm, 2014, 16, 8664-8668.	2.6	23
20	Enhanced water stability and CO ₂ gas sorption properties of a methyl functionalized titanium metal–organic framework. New Journal of Chemistry, 2014, 38, 2752-2755.	2.8	19
21	Liquid-Like Hydrogen Stored in Nanoporous Materials at 50 K Observed by in Situ Neutron Diffraction Experiments. Journal of Physical Chemistry C, 2013, 117, 3177-3184.	3.1	9
22	Poly[bis(ethanol)(μ4-2,3,5,6-tetrafluorobenzene-1,4-dicarboxylato)cadmium]. Acta Crystallographica Section E: Structure Reports Online, 2013, 69, m577-m578.	0.2	0
23	Control of catenation in CuTATB-n metal–organic frameworks by sonochemical synthesis and its effect on CO2 adsorption. Journal of Materials Chemistry, 2011, 21, 3070.	6.7	225
24	Near achiral metal–organic frameworks from conformationally flexible homochiral ligands resulted by the preferential formation of pseudo-inversion center in asymmetric unit. CrystEngComm, 2011, 13, 1277-1279.	2.6	9
25	Asymmetric catalytic reactions by NbO-type chiral metal–organic frameworks. Chemical Science, 2011, 2, 877.	7.4	199
26	Preparation of three new metal-organic frameworks by adjusting reaction conditions. , 2010, , .		1
27	Guest-dependent self-assembly of (R,R)-2,3-diphenylsuccinic acids :  formation of a cyclotetrameric chiral square. CrystEngComm, 2009, 11, 549.	2.6	3
28	Control of Vertex Geometry, Structure Dimensionality, Functionality, and Pore Metrics in the Reticular Synthesis of Crystalline Metalâ^'Organic Frameworks and Polyhedra. Journal of the American Chemical Society, 2008, 130, 11650-11661.	13.7	498
29	A chiral trianglular coordination complex derived from (S,S)-1,2-dimethoxy-di-4-(2′-carboxyl-5′-pyridyl)phenyl ethane and Cu(ii) by self-assembly. CrystEngComm, 2007, 9, 273-277.	2.6	10
30	Molecular Simulation Study on Catenation Effects on Hydrogen Uptake Capacity of MOFs. Materials Research Society Symposia Proceedings, 2006, 971, 1.	0.1	0
31	Quantitative Structure-Uptake Relationship of Metal-Organic Frameworks as Hydrogen Storage Material. Materials Research Society Symposia Proceedings, 2006, 927, 1.	0.1	0
32	Understanding the Mechanism of Hydrogen Adsorption into Metal-Organic Frameworks. Materials Research Society Symposia Proceedings, 2005, 885, 1.	0.1	0
33	Supramolecular self-assembly of tin(iv) porphyrin channels stabilizing single-file chains of water molecules. CrystEngComm, 2005, 7, 417.	2.6	60